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10 Multiple Linear Regression
Why and how to carry out multiple linear regression analysis,
and how to interpret its results

Motivation

There is a substantial difference in the average earnings of women and men in all countries. You
want to understand more about the potential origins of that difference, focusing on employees
with a graduate degree in your country. You have data on a large sample of employees with a
graduate degree, with their earnings and some of their characteristics, such as age and the kind
of graduate degree they have. Women and men differ in those characteristics, which may affect
their earnings. How should you use this data to uncover gender difference that are not due to
differences in those other characteristics? And can you use regression analysis to uncover pat-
terns of associations between earnings and those other characteristics that may help understand
the origins of gender differences in earnings?

You have analyzed your data on hotel prices in a particular city to find hotels that are underpriced
relative to how close they are to the city center. But you have also uncovered differences in terms
of other features of the hotels that measure quality and are related to price. How would you
use this data to find hotels that are underpriced relative to all of their features? And how can
you visualize the distribution of hotel prices relative to what price you would expect for their
features in a way that helps identify underpriced hotels?

After understanding simple linear regression, we can turn to multiple linear regression, which
has more than one explanatory variable. Multiple linear regression is the most used method to
uncover patterns of associations between variables. There are multiple reasons to include more
explanatory variables in a regression. We may be interested in uncovering patterns of associa-
tion between y and several explanatory variables, which may help uncover patterns of association
that could be investigated in subsequent analysis. Or, we may be interested in the effect of an
x variable, but we want to compare observations that are different in x but similar in other vari-
ables. Finally, we may want to predict y, and we want to use more x variables to arrive at better
predictions.

We discuss why and when we should estimate multiple regression, how to interpret its coeffi-
cients, and how to construct and interpret confidence intervals and test the coefficients. We discuss
the relationship between multiple regression and simple regression. We explain that piecewise lin-
ear splines and polynomial regressions are technically multiple linear regressions without the same
interpretation of the coefficients. We discuss how to include categorical explanatory variables as
well as interactions that help uncover different slopes for groups. We include an informal discus-
sion on how to decide what explanatory variables to include and in what functional form. Finally,
we discuss why a typical multiple regression with observational data can get us closer to causal
interpretation without fully uncovering it.
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The first case study in this chapter, Understanding the gender difference in earnings, uses
the cps-earnings dataset to illustrate the use of multiple regression to understand potential sources
of gender differences in earnings. We also go back to our question on finding underpriced hotels
relative to their location and quality in the case study Finding a good deal among hotels with
multiple regression, using the hotels-vienna dataset, to illustrate the use of multiple regression
in prediction and residual analysis.

Learning outcomes
After working through this chapter, you should be able to

• identify questions that are best answered with the help of multiple regression from available data;
• estimate multiple linear regression coefficients and present and interpret them;
• estimate appropriate standard errors, create confidence intervals and tests of regression coefficients,

and interpret those;
• select the variables to include in a multiple regression guided by the purpose of the analysis;
• understand the relationship between the results of a multiple regression and causal effects when

using observational data.

10.1 Multiple Regression: Why and When?

There are three broad reasons to carry out multiple regression analysis instead of simple regression.
The first is exploratory data analysis: we may want to uncover more patterns of association, typ-
ically to generate questions for subsequent analysis. The other two reasons are the two ultimate
aims of data analysis: making a better prediction by explaining more of the variation, and getting
closer to establishing cause and effect in observational data by comparing observations that are more
comparable.

The first example of the introduction is about understanding the reasons for a difference. It’s
a causal question of sorts: we are interested in what causes women to earn less than men. The
second example is one of prediction: we want to capture average price related to hotel features
that customers value in order to identify hotels that are inexpensive compared to what their price
“should be.”

10.2 Multiple Linear Regression with Two Explanatory Variables

Multiple regression analysis uncovers average y as a function of more than one x variable: yE =

f(x1, x2, ...). It can lead to better predictions of ŷ by considering more explanatory variables. It may
improve the interpretation of slope coefficients by comparing observations that are different in terms
of one of the x variables but similar in terms of all other x variables.

Multiple linear regression specifies a linear function of the explanatory variables for the average y.
Let’s start with the simplest version with two explanatory variables:

yE = β 0 + β 1x1 + β 2x2 (10.1)
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This is the standard notation for amultiple regression: all coefficients are denoted by the Greek letter β ,
but they have subscripts. The intercept has subscript 0, the first explanatory variable and its coefficient
have subscript 1, and the second explanatory variable and its coefficient have subscript 2.

Having another right-hand-side variable in the regression means that we further condition on that
other variable when we compare observations. The slope coefficient on x1 shows the difference in
average y across observations with different values of x1 but with the same value of x2. Symmetrically,
the slope coefficient on x2 shows difference in average y across observations with different values of x2

but with the same value of x1. This way, multiple regression with two explanatory variables compares
observations that are similar in one explanatory variable to see the differences related to the other
explanatory variable.

The interpretation of the slope coefficients takes this into account. β 1 shows how much larger y is
on average for observations in the data with one unit larger value of x1 but the same value of x2. β 2
shows how much larger y is on average for observations in the data with one unit larger value of x2

but with the same value of x1.

Review Box 10.1 Multiple linear regression

Multiple linear regression with two explanatory variables:

yE = β 0 + β 1x1 + β 2x2

Interpretation of the coefficients:

• β 0 (intercept): average y for observations if both x1 and x2 are zero in the data.
• β 1 (slope of x1): on average, y is β 1 units larger in the data for observations with one unit larger

x1 but with the same x2.
• β 2 (slope of x2): on average, y is β 2 units larger in the data for observations with one unit larger

x2 but with the same x1.

10.3 Multiple Regression and Simple Regression: Omitted Variable
Bias

It is instructive to examine the difference in the slope coefficient of an explanatory variable x1 when
it is the only variable on the right-hand side of a regression compared to when another explanatory
variable, x2, is included as well. In notation, the question is the difference between β in the simple
linear regression

yE = α + βx1 (10.2)

and β 1 in the multiple linear regression

yE = β 0 + β 1x1 + β 2x2 (10.3)

For example, we may use time series data on sales and prices of the main product of our com-
pany, and regress month-to-month change in log quantity sold (y) on month-to-month change in
log price (x1). Then β shows the average percentage change in sales when our price increases by 1%.
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For example, β̂ = −0.5 would show that sales tend to decrease by 0.5% when our price increases
by 1%.

But we would like to know what happens to sales when we change our price but competitors
don’t. The second regression has change in the log of the average price charged by our competitors
(x2) next to x1. Here β 1 would answer our question: average percentage change in our sales in months
when we increase our price by 1%, but competitors don’t change their price. Suppose that in that
regression, we estimate β̂ 1 = −3. That is, our sales tend to drop by 3%when we increase our price by
1% and our competitors don’t change their prices. Also suppose that the coefficient on x2 is positive,
β̂ 2 = 3. That means that our sales tend to increase by 3% when our competitors increase their prices
by 1% and our price doesn’t change.

As we’ll see, whether the answer to the two questions is the same will depend on whether x1 and
x2 are related. To understand that relationship, let us introduce the regression of x2 on x1, called the
x−x regression, where δ is the slope parameter:

xE
2 = γ + δx1 (10.4)

In our own price–competitor price example, δ would tell us how much the two prices tend to move
together. In particular, it tells us about the average percentage change in competitor price in months
when our own price increases by 1%. Let’s suppose that we estimate it to be δ̂ = 0.83: competitors
tend to increase their price by 0.83% when our company increases its price by 1%. The two prices
tend to move together, in the same direction.

To link the two original regressions, plug this x−x regression back in the multiple regression (this
step is fine even though that may not be obvious; see Under the Hood section 10.U1):

yE = β 0 + β 1x1 + β 2(γ + δx1) = β 0 + β 2γ + (β 1 + β 2δ)x1 (10.5)

Importantly, we find that with regards to x1, the slope coefficients in the simple (β ) and multiple
regression (β 1) are different:

β − β 1 = δβ 2 (10.6)

The slope of x1 in a simple regression is different from its slope in the multiple regression, the difference
being the product of its slope in the regression of x2 on x1 and the slope of x2 in the multiple regression.
Or, put simply, the slope in simple regression is different from the slope in multiple regression by the
slope in the x−x regression times the slope of the other x in the multiple regression.

This difference is called the omitted variable bias. If we are interested in the coefficient on x1

with x2 in the regression, too, it’s the second regression that we need; the first regression is an incor-
rect regression as it omits x2. Thus, the results from that first regression are biased, and the bias is
caused by omitting x2. We will discuss omitted variables bias in detail when discussing causal effects
in Chapter 21, Section 21.3.

In our example, we had that β̂ = −0.5 and β̂ 1 = −3, so that β̂ − β̂ 1 = −0.5 − (−3) = +2.5. In
this case our simple regression gives a biased estimate of the slope coefficient on x1 compared to the
multiple regression, and the bias is positive (the simple regression estimate is less negative). Recall that
we had δ̂ = 0.83 and β̂ 2 = 3. Their product is approximately 2.5. This positive bias is the result of two
things: a positive association between the two price changes (δ) and a positive association between
competitor price and our own sales (β 2).

In general, the slope coefficient on x1 in the two regressions is different unless x1 and x2 are uncor-
related (δ = 0) or the coefficient on x2 is zero in the multiple regression (β 2 = 0). The slope in the
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simple regression is more positive or less negative if the correlation between x2 and x1 has the same
sign as β 2 (both are positive or both are negative).

The intuition is the following. In the simple regression yE = α+βx1, we compare observations that
are different in x1 without considering whether they are different in x2. If x1 and x2 are uncorrelated
this does not matter. In this case observations that are different in x1 are, on average, the same in x2,
and, symmetrically, observations that are different in x2 are, on average, the same in x1. Thus the extra
step we take with the multiple regression to compare observations that are different in x1 but similar
in x2 does not matter here.

If, however, x1 and x2 are correlated, comparing observations with or without the same x2 value
makes a difference. If they are positively correlated, observations with higher x2 tend to have higher
x1. In the simple regression we ignore differences in x2 and compare observations with different values
of x1. But higher x1 values mean higher x2 values, too. Corresponding differences in y may be due to
differences in x1 but also due to differences in x2.

In our sales–own price–competitors’ price example, the drop in sales when our own price increases
(and competitors do what they tend to do) is smaller than the drop in sales when our own price
increases but competitor prices don’t change. That’s because when our own price increases, competi-
tors tend to increase their prices, too, which in itself would push up our sales. The two work against
each other: the increase in our price makes sales decrease, but the increase in competitors’ prices that
tends to happen at the same time makes sales increase.

Review Box 10.2 Multiple linear regression and simple linear regression

• The difference of slope β in yE = α + βx1 and the slope β 1 in yE = β 0 + β 1x1 + β 2x2 is

β − β 1 = δβ 2

where δ is the slope in the regression of x2 on x1: xE
2 = γ + δx1

• In words, briefly: slope in the simple regression differs from the slope in the multiple regression
by the product of the slope in x−x regression and slope of other x in multiple regression.

10.A1 CASE STUDY – Understanding the Gender Difference
in Earnings

Multiple linear regression

We continue investigating patterns in earnings, gender, and age. The data is the same
cps-earnings dataset that we used earlier in Chapter 9, Section 9.A1: it is a representative sample
of all people of age 15 to 85 in the USA in 2014.

Compared to Chapter 9, Section 9.A1, where we focused on a single occupation, we broaden
the scope of our investigation here to all employees with a graduate degree – that is, a
degree higher than a four-year college degree: these include professional, master’s, and doctoral
degrees.
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We use data on people of age 24 to 65 (to reflect the typical working age of people with these
kinds of graduate degrees). We excluded the self-employed (their earnings is difficult to measure)
and included those who reported 20 hours or more as their usual weekly time worked. We have
18 241 observations.

The dependent variable is log hourly earnings (ln wage). Table 10.1 shows the results from
three regressions: (1) is a simple regression of ln wage on a binary female variable; (2) is a multiple
regression that includes age as well, in a linear fashion; and (3) is a simple regression with age as
the dependent variable and the female binary variable.

Table 10.1 Gender differences in earnings – log earnings and gender

(1) (2) (3)
Variables ln wage ln wage age

female −0.195** −0.185** −1.484**
(0.008) (0.008) (0.159)

age 0.007**
(0.000)

Constant 3.514** 3.198** 44.630**
(0.006) (0.018) (0.116)

Observations 18 241 18 241 18 241
R-squared 0.028 0.046 0.005

Note: Robust standard error estimates in parentheses. ** p<0.01, * p<0.05.

Source: cps-earnings dataset. 2014, USA. Employees of age 24–65 with a graduate
degree and 20 or more work hours per week.

According to column (1), women in this sample earn 19.5 log points (around 21%) less
than men, on average. Column (2) suggests that when we compare employees of the same
age, women in this sample earn 18.5 log points (around 20%) less than men, on aver-
age. This is a slightly smaller gender difference than in column (1). While the log approx-
imation is not perfect at these magnitudes, from now on, we will ignore the difference
between log units and percent. For example, we will interpret a 0.195 coefficient as a 19.5%
difference.

The estimated coefficients differ, and we knowwhere the difference should come from: average
difference in age. Let’s use the formula for the difference between the coefficient on female in the
simple regression and in the multiple regression. Their difference is −0.195 − (−0.185) = −0.01.
This should be equal to the product of the coefficient of female in the regression of age on female
(our column (3)) and the coefficient on age in column (2): −1.48 × 0.007 ≈ −0.01. These two are
indeed equal.

Intuitively, we can see that women of the same age have a slightly smaller earnings disadvantage
in this data because they are somewhat younger, on average, and employees who are younger
tend to earn less. Part of the earnings disadvantage of women is thus due to the fact that they
are younger. This is a small part, though: around one percentage point of the 19.5% difference,
which is a 5% share of the entire difference.
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But why are women employees younger, on average, in the data? It’s because there are fewer
female employees with graduate degrees over age 45 than below. Figure 10.1 shows two density
plots overlaid: the age distributions of male and female employees with graduate degrees. There
are relatively few below age 30. From age 30 and up, the age distribution is close to uniform for
men. But not for women: the proportion of female employees with graduate degrees drops above
age 45, and again above age 55.

In principle, this could be due to two things: either there are fewer women with graduate
degrees in the 45+ generation than among the younger ones, or fewer of them are employed
(i.e., employed for 20 hours or more for pay, which is the criterion to be in our subsample). Further
investigation reveals that it is the former: women are less likely to have a graduate degree if they
were born before 1970 (those 45+ in 2014) in the USA. The proportion of women working for
pay for more than 20 hours is very similar among those below age 45 and above.
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Figure 10.1 Age distribution of employees with graduate degree by gender

Note: Kernel density estimates of the age distribution of employees with a graduate degree; female and male
employees separately.

Source: cps-earnings dataset. 2014, USA. Employees of age 24–65 with a graduate degree and 20 or more
work hours per week. N=18241.

10.4 Multiple Linear Regression Terminology

Multiple regression with two explanatory variables (x1 and x2) allows for assessing the differences in
expected y across observations that differ in x1 but are similar in terms of x2. This difference is called
conditional on that other explanatory variable x2: difference in y by x1, conditional on x2. It is also
called the controlled difference: difference in y by x1, controlling for x2. We often say that we condition
on x2, or control for x2, when we include it in a multiple regression that focuses on average differences
in y by x1.

When we focus on x1 in the multiple regression, the other right-hand-side variable, x2, is called
a covariate. In some cases, it is also called a confounder: if omitting x2 makes the slope on x1

different, it is said to confound the association of y and x1 (we’ll discuss confounders in Chapter 19,
Section 19.14).
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Review Box 10.3 Multiple linear regression terminology

In a regression yE = β 0 + β 1x1 + β 2x2 that focuses on β 1,

• if we estimate a multiple regression yE = β 0 + β 1x1 + β 2x2, and we are interested in β 1, x2 is a
covariate, and we say that we condition on x2 or control for x2;

• if, instead, we estimate yE = α + βx1, we say x2 is an omitted variable.

10.5 Standard Errors and Confidence Intervals in Multiple Linear
Regression

The concept of statistical inference and the interpretation of confidence intervals in multiple regres-
sions is similar to that in simple regressions. For example, the 95% confidence interval of the slope
coefficient of x1 in a multiple linear regression shows where we can expect the coefficient in the
population, or general pattern, represented by the data.

Similarly to the coefficients in the simple regression, the 95% CI of a slope in a multiple regression
is the coefficient value estimated from the data plus-or-minus two standard errors. Again similarly to
the simple regression case, we can get the standard error either by bootstrap or using an appropriate
formula. And, as usual, the simple SE formula is not a good approximation in general: it assumes
homoskedasticity (same fit of the regression over the range of the explanatory variables). There is a
robust SE formula for multiple regression, too, that works in general, both under homoskedasticity
and heteroskedasticity . Thus, just as with simple regressions we should make the software calculate
robust SE as default.

While not correct in general, the simple formula is good to examine because it shows what makes
the SE larger in a simpler more intuitive way than the robust formula. The simple SE formula for the
slope β̂ 1 is

SE(β̂ 1) =
Std[e]

√nStd(x1)
√

1 − R2
1

(10.7)

Similarly to the simple SE formula for the simple linear regression in Chapter 9, Section 9.2, this
formula has

√n in its denominator. But, similarly again to the simple linear regression, the correct
number to divide with would be slightly different: the degrees of freedom instead of the number of
the observations (see Under the Hood section 9.U4). Here that would be

√
n − k − 1, where k is the

number of right-hand-side variables in the regression. Similarly to the simple regression, this makes
little practical difference in most cases. However, in contrast with the simple regression case, it may
make a difference not only when we have too few observations, but also when we have many right-
hand-side variables relative to the number of observations. We’ll ignore that issue for most of this
textbook, but it will come back in Chapter 21, Section 21.4.

This formula is very similar to what we have for simple regressions in other details, too, except
for that new

√
1 − R2

1 term in the denominator. R2
1 is the R-squared of the regression of x1 on x2.

Recall that the R-squared of a simple regression is the square of the correlation between the two
variables in the regression. Thus, R2

1 is the square of the correlation between x1 and x2. The stronger
this correlation, the larger R2

1, the smaller
√

1 − R2
1, but then the larger 1/

√
1 − R2

1 (
√

1 − R2
1 is in the

denominator). So, the stronger the correlation between x1 and x2, the larger the SE of β̂ 1. Note the
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symmetry: the same would apply to the SE of β̂ 2. As for the familiar terms in the formula: the SE is
smaller, the smaller the standard deviation of the residuals (the better the fit of the regression), the
larger the sample, and the larger the standard deviation of x1.

At the polar case of a correlation of one (or negative one) that corresponds to R2
1 = 1, the SE of the

two coefficients does not exist. A correlation of one means that x1 and x2 are linear functions of each
other. It is not only the SE formulae that cannot be computed in this case; the regression coefficients
cannot be computed either. In this case the explanatory variables are said to be perfectly collinear.

Strong but imperfect correlation between explanatory variables is called multicollinearity. It
allows for calculating the slope coefficients and their standard errors, but it makes the standard errors
large. Intuitively, this is because we would like to compare observations that are different in one of the
variables but similar in the other. But strong correlation between the two implies that there are not
many observations that are the same in one variable but different in the other variable. Indeed, the
problem of multicollinearity is very similar to the problem of having too few observations in general.
We can see it in the formula as well: the role of (1 − R2) and n are the same.

Consider our example of using monthly data to estimate how sales of the main product of our com-
pany tend to change when our price changes but the prices of competitors do not. In that example
our own price and the competitors’ prices tended to move together. One consequence of this is that
omitting the change in the competitors’ price would lead to omitted variable bias; thus we need to
include that in our regression. But here we see that it has another consequence. Including both price
variables in the regression makes the SE of the coefficient of our own price larger, and its confidence
interval wider, too. Intuitively, that’s because there are fewer months when our price changes but the
competitors’ prices don’t change, and it is changes in sales in those months that contain the valuable
information for estimating the coefficient on our own price. Months when our own and competitors’
prices change the same way don’t help. So the reason why we want competitors’ price in our regres-
sion (strong co-movement) is exactly the reason for having imprecise estimates with wide confidence
intervals.

That’s true in general, too. Unfortunately, there is not much we can do about multicollinearity in
the data we have, just as there is not much we can do about having too few observations. More
data helps both, of course, but that is not much help when we have to work with the data that’s
available. Alternatively, we may decide to change the specification of the regression and drop one of
the strongly correlated explanatory variables. However, that results in a different regression. Whether
we want a different regression or not needs to be evaluated keeping the substantive question of the
analysis in mind.

Review Box 10.4 Inference in multiple regression

• In the linear regression yE = β 0 + β 1x1 + β 2x2, the 95% confidence interval (CI) of β̂ 1 tells us
about the range in which we can expect, with 95% confidence, the difference in y to fall in the
general pattern, or population, that our data represents, when comparing observations with the
same x2 but differing in x1 by one unit.

• In the linear regression yE = β 0 + β 1x1 + β 2x2, the simple SE formula of β̂ 1 is

SE(β̂ 1) =
Std[e]

√nStd(x1)
√

1 − R2
1
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where e is the residual e = y − β̂ 0 + β̂ 1x1 + β̂ 2x2 and R2
1 is the R-squared in the simple linear

regression of x1 on x2.
• The standard error of β̂ 1 is smaller:

◦ the smaller the standard deviation of the residual (the better the fit of the regression);
◦ the larger the sample;
◦ the larger the variance of x1;
◦ the smaller the correlation between x1 and x2 (the smaller R2

1).

10.6 Hypothesis Testing in Multiple Linear Regression

Testing hypotheses about coefficients in a multiple regression is also very similar to that in a simple
regression. The standard errors are estimated in a different way but with the appropriate SE, all works
just the same. For example, testing whether H0 : β 1 = 0 against HA : β 1 ̸= 0, we need the p-value or
the t-statistic. Standard regression output produced by most statistical software shows those statistics.
If our level of significance is 0.05, we reject H0 if the p-value is less than 0.05, or – which is the same
information in a different form – the t-statistic is less than −2 or greater than +2.

Besides testing a hypothesis that involves a single coefficient, we sometimes test a hypothesis that
involves more coefficients. As we explained in Chapter 9, Section 9.5, these come in two forms: a
single null hypothesis about two or more coefficients (e.g., if they are equal), or a list of null hypotheses
(e.g., that several slope coefficients are zero). The latter is called testing joint hypotheses .

Testing joint hypotheses are based on a test statistic called the F-statistic, and the related test is
called the F-test. The underlying logic of hypothesis testing is the same here: reject the null if the test
statistic is larger than a critical value, which shows that the estimated coefficients are too far from
what’s in the null. The technical details are different. But the meaning of the p-value is the same as
always. Thus, we advise getting the p-value when testing a joint hypothesis.

In fact, the test that asks whether all slope coefficients are zero in the regression has its own name:
the global F-test, or simply “the” F-test. Its results are often shown by statistical software by default.
More frequently, we use joint testing of joint hypotheses to decide whether a subset of the coefficients
(such as the coeffients on all geographical variables) are all zero.

Similarly to testing hypotheses about single coefficients, the F-test needs appropriate standard error
estimates. In cross-sectional data, those appropriate estimates are usually the robust SE estimates.

10.A2 CASE STUDY – Understanding the Gender Difference
in Earnings

Statistical inference

Let’s revisit the results in Table 10.1, taking statistical inference into account. The data represents
employees with a graduate degree in the USA in 2014. According to the estimate in column (1),
women in this sample earn 19.5 percent less than men, on average. The appropriately estimated
(robust) standard error is 0.008, implying a 95% CI of approximately [−0.21,−0.18]. We can be
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95% confident that women earned 18 to 21 percent less, on average, than men among employees
with graduate degrees in the USA in 2014.

Column (2) suggests that when we compare employees of the same age, women in this sam-
ple earn approximately 18.5 percent less than men, on average. The 95% CI is approximately
[−0.20,−0.17]. It turns out that the estimated −0.195 in column (1) is within this CI, and the two
CIs overlap. Thus it is very possible that there is no difference between these two coefficients in
the population. We uncovered a difference in the data between the unconditional gender wage
gap and the gender gap conditional on age. However, that difference is small. Moreover, it may
not exist in the population. These two facts tend to go together: small differences are harder to pin
down in the population, or general pattern, represented by the data. Often, that’s all right. Small
differences are rarely very important. When they are, we need more precise estimates, which may
come with larger sample size.

10.7 Multiple Linear Regression with Three or More Explanatory
Variables

We spent a lot of time on multiple regression with two right-hand-side variables. That’s because that
regression shows all the important differences between simple regression and multiple regression in
intuitive ways. In practice, however, we rarely estimate regressions with exactly two right-hand-side
variables. The number of right-hand-side variables in a multiple regression varies from case to case,
but it’s typically more than two. In this section we describe multiple regressions with three or more
right-hand-side variables. Their general form is

yE = β 0 + β 1x1 + β 2x2 + β 3x3 + · · · (10.8)

All of the results, language, and interpretations discussed so far carry forward to multiple linear
regressions with three or more explanatory variables. Interpreting the slope of x1: on average, y is
β 1 units larger in the data for observations with one unit larger x1 but with the same value for all
other x variables. The interpretation of the other slope coefficients is analogous. The language of
multiple regression is the same, including the concepts of conditioning, controlling, omitted, or
confounder variables.

The standard error of coefficients may be estimated by bootstrap or a formula. As always, the
appropriate formula is the robust SE formula. But the simple formula contains the things that make
even the robust SE larger or smaller. For any slope coefficient β̂ k the simple SE formula is

SE(β̂ k) =
Std[e]

√nStd[xk]
√

1 − R2
k

(10.9)

Almost all is the same as with two right-hand-side variables. In particular, the SE is smaller, the smaller
the standard deviation of the residuals (the better the fit of the regression), the larger the sample, and
the larger the standard deviation of xk. The new-looking thing isR2

k. But that’s simply the generalization
of R2

1 in the previous formula. It is the R-squared of the regression of xk on all other x variables. The
smaller that R-squared, the smaller the SE.
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Review Box 10.5 Multiple linear regression with three or more explanatory variables

• Equation: yE = β 0 + β 1x1 + β 2x2 + β 3x3 + · · ·
• Interpretation of β k (slope of xk):

◦ On average, y is β k units larger in the data for observations with one unit larger xk but with
the same value for all other x variables.

◦ SE(β̂ k) = Std[e]
√nStd[xk]

√
1−R2

k
where e is the regression residual and R2

k is the R-squared of the

regression of xk on all other x variables.

10.8 Nonlinear Patterns and Multiple Linear Regression

In Chapter 8 we introduced piecewise linear splines, quadratics, and other polynomials to approximate
a nonlinear yE = f(x) regression.

From a substantive point of view, piecewise linear splines and polynomials of a single explanatory
variable are not multiple regressions. They do not uncover differences with respect to one right-
hand-side variable conditional on one or more other right-hand-side variables. Their slope coefficients
cannot be interpreted as the coefficients of multiple regressions: it does not make sense to com-
pare observations that have the same x but a different x2. But such regressions are multiple linear
regressions from a technical point of view. This means that the way their coefficients are calculated
is the exact same way the coefficients of multiple linear regressions are calculated. Their standard
errors are calculated the same way, too and so are their confidence intervals, test statistics, and
p-values.

Testing hypotheses can be especially useful here, as it can help choose the functional form. With a
piecewise linear spline, we can test whether the slopes are the same in adjacent line segments. If we
can’t reject the null that they are the same, we may as well join them instead of having separate line
segments. Testing hypotheses helps in choosing a polynomial, too. Here an additional complication is
that the coefficients don’t have an easy interpretation in themselves. At the same time, testing if all
nonlinear coefficients are zero may help decide whether to include them at all.

However, testing hypotheses to decide whether to include a higher-order polynomial has its issues.
Recall that a multiple linear regression requires that the right-hand-side variables are not perfectly
collinear. In other words, they cannot be linear functions of each other. With a polynomial on the
right-hand side, those variables are exact functions of each other: x2 is the square of x. But they
are not a linear function of each other, so, technically, they are not perfectly collinear. That’s why
we can include both x and x2 and, if needed, its higher-order terms, in a linear regression. While
they are not perfectly collinear, explanatory variables in a polynomial are often highly correlated. That
multicollinearity results in high standard errors, wide confidence intervals, and high p-values . As with
all kinds of multicollinearity, there isn’t anything we can do about that once we have settled on a
functional form.

Importantly, when thinking about functional form, we should always keep in mind the substan-
tive focus of our analysis. As we emphasized in Chapter 8, Section 8.1, we should go back to that
original focus when deciding whether we want to include a piecewise linear spline or a polynomial
to approximate a nonlinear pattern. There we said that we want our regression to have a good
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approximation to a nonlinear pattern in x if our goal is prediction or analyzing residuals. We may
not want that if all we care about is the average association between x and y, except if that non-
linearity messes up the average association. This last point is a bit subtle, but usually means that we
may want to transform variables to relative changes or take logs if the distribution of x or y is very
skewed.

Here we have multiple x variables. Should we care about whether each is related to average y
in a nonlinear fashion? The answer is the same as earlier: yes, if we want to do prediction or ana-
lyze residuals; no, if we care about average associations (except we may want to have transformed
variables here, too). In addition, when we focus on a single average association (with, say, x1) and
all the other variables (x2, x3, ...) are covariates to condition on, the only thing that matters is the
coefficient on x1. Even if nonlinearities matter for x2 and x3 themselves, they only matter for us
if they make a difference in the estimated coefficient on x1. Sometimes they do; very often they
don’t.

10.A3 CASE STUDY – Understanding the Gender Difference
in Earnings

Nonlinear patterns and multiple linear regression

This step in our case study illustrates the point we made in the previous section. The regressions
in Table 10.2 enter age in linear ways. Using part of the same data, in Chapter 9, Section 9.A2
we found that log earnings and age follow a nonlinear pattern. In particular, there we found that
average log earnings are a positive and steep function of age for younger people, but the pattern
becomes gradually flatter for the middle-aged and may become completely flat, or even negative,
among older employees.

Should we worry about the nonlinear age–earnings pattern when our question is the average
earnings difference between men and women? We investigated the gender gap conditional on
age. Table 10.2 shows the results for multiple ways of doing it. Column (1) shows the regres-
sion with the unconditional difference that we showed in Table 10.1, for reference. Column (2)
enters age in linear form. Column (3) enters it as quadratic. Column (4) enters it as a fourth-order
polynomial.

The unconditional difference is −19.5%; the conditional difference is −18.5% according to
column (2), and−18.3% according to columns (3) and (4). The various estimates of the conditional
difference are very close to each other, and all of them are within each others’ confidence intervals.
Thus, apparently, the functional form for age does not really matter if we are interested in the
average gender gap.

At the same time, all coefficient estimates of the high order polynomials are statistically signifi-
cant, meaning that the nonlinear pattern is very likely true in the population and not just a chance
event in the particular dataset. The R-squared of the more complicated regressions are larger. These
indicate that the complicated polynomial specifications are better at capturing the patterns. That
would certainly matter if our goal was to predict earnings. But it does not matter for uncovering
the average gender difference in earnings.
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Table 10.2 Gender differences in earnings – log earnings and age, various functional forms

(1) (2) (3) (4)
Variables ln wage ln wage ln wage ln wage

female −0.195** −0.185** −0.183** −0.183**
(0.008) (0.008) (0.008) (0.008)

age 0.007** 0.063** 0.572**
(0.000) (0.003) (0.116)

age2 −0.001** −0.017**
(0.000) (0.004)

age3 0.000**
(0.000)

age4 −0.000**
(0.000)

Constant 3.514** 3.198** 2.027** −3.606**
(0.006) (0.018) (0.073) (1.178)

Observations 18 241 18 241 18 241 18 241
R-squared 0.028 0.046 0.060 0.062

Note: Robust standard error estimates in parentheses. ** p<0.01, * p<0.05.

Source: cps-earnings dataset. 2014 USA. Employees of age 24–65 with a graduate degree and 20 or more
work hours per week.

10.9 Qualitative Right-Hand-Side Variables

A great advantage of multiple linear regression is that it can deal with binary and other qualitative
explanatory variables (also called categories, factor variables), together with quantitative variables, on
the right-hand side.

To include such variables in the regression, we need to have them as binary, zero–one variables –
also called dummy variables in the regression context. That’s straightforward for variables that are
binary to begin with: assign values zero and one (as we did with female in the case study). We need
to transform other kinds of qualitative variables into binary ones, too, each denoting whether the
observation belongs to that category (one) or not (zero). Then we need to include all those binary
variables in the regression. Well, all except one.

We should select one binary variable denoting one category as a reference category, or refer-
ence group – also known as the “left-out category.” Then we have to include the binary variables
for all other categories but not the reference category. That way the slope coefficient of a binary
variable created from a qualitative variable shows the difference between observations in the cate-
gory captured by the binary variable and the reference category. If we condition on other explanatory
variables, too, the interpretation changes in the usual way: we compare observations that are similar
in those other explanatory variables.

As an example, suppose that x is a categorical variable measuring the level of education with three
values x = low,medium, high. We need to create binary variables and include two of the three in the
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regression. Let the binary variable xmed denote if x = medium, and let the binary xhigh variable denote
if x = high. Include xmed and xhigh in the regression. The third potential variable for x = low is not
included. It is the reference category.

yE = β 0 + β 1xmed + β 2xhigh (10.10)

Let us start with the constant, β 0; this shows average y in the reference category. Here, β 0 is average
y when both xmed = 0 and xhigh = 0: this is when x = low. β 1 is the difference in average y between
observations that are different in xmed but the same in xhigh. Thus β 1 shows the difference of average y
between observations with x = medium and x = low, the reference category. Similarly, β 2 shows the
difference of average y between observations with x = high and x = low, the reference category.

Which category to choose for the reference? In principle that should not matter: choose a category
and all others are compared to that, but we can easily compute other comparisons from those. For
example, the difference in yE between observations with x = high and x = medium in the example
above is simply β 2 − β 1 (both coefficients compare to x = low, and that drops out of their difference).
But the choice may matter for practical purposes. Two guiding principles may help this choice, one
substantive, one statistical. The substantive guide is simple: we should choose the category to which
wewant to compare the rest. Examples include the home country, the capital city, the lowest or highest
value group. The statistical guide is to choose a category with a large number of observations. That
is relevant when we want to infer differences from the data for the population, or general pattern,
it represents. If the reference category has very few observations, the coefficients that compare to it
will have large standard errors, wide confidence intervals, and large p-values.

Review Box 10.6 Qualitative right-hand-side variables in multiple linear
regression

• We should include qualitative right-hand-side variables with more categories as a series of binary
(“dummy”) variables.

• For a qualitative right-hand-side variable with k categories, we should enter k−1 binary variables;
the category not represented by those binary variables is the reference category.

• Coefficients on each of the k − 1 binary variables show average differences in y compared to
the reference category.

10.A4 CASE STUDY – Understanding the Gender Difference
in Earnings

Qualitative variables

Let’s use our case study to illustrate qualitative variables as we examine earnings differences by
categories of educational degree. Recall that our data contains employees with graduate degrees.
The dataset differentiates three such degrees: master’s (including graduate teaching degrees, MAs,
MScs, MBAs), professional (including MDs), and PhDs.
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Table 10.3 shows the results from three regressions. As a starting point, column (1) repeats
the results of the simple regression with female on the right-hand side; column (2) includes two
education categories ed_Profess and ed_PhD; and column (3) includes another set of education
categories, ed_Profess and ed_MA. The reference category is MA degree in column (2) and PhD in
column (3).

Table 10.3 Gender differences in earnings – log earnings, gender and education

(1) (2) (3)

Variables ln wage ln wage ln wage

female −0.195** −0.182** −0.182**

(0.008) (0.009) (0.009)

ed_Profess 0.134** −0.002

(0.015) (0.018)

ed_PhD 0.136**

(0.013)

ed_MA −0.136**

(0.013)

Constant 3.514** 3.473** 3.609**

(0.006) (0.007) (0.013)

Observations 18 241 18 241 18 241

R-squared 0.028 0.038 0.038

Note: MA, Professional, and PhD are three categories of graduate degree. Column (2): MA is the reference
category. Column (3): the reference category is Professional or PhD. Robust standard error estimates in
parentheses. ** p<0.01, * p<0.05.

Source: cps-earnings dataset. USA, 2014. Employees of age 24–65 with a graduate degree and 20 or
more work hours per week.

The coefficients in column (2) of Table 10.3 show that comparing employees of the same gender,
those with a professional degree earn, on average, 13.4% more than employees with an MA
degree, and those with a PhD degree earn, on average, 13.6% more than employees with an MA
degree. The coefficients in column (3) show that, among employees of the same gender, those
with an MA degree earn, on average, 13.6% less than those with a PhD degree, and those with a
professional degree earn about the same on average as those with a PhD degree. These differences
are consistent with each other.

This is a large dataset so confidence intervals are rather narrow whichever group we choose
as a reference category. Note that the coefficient on female is smaller, −0.182, when education is
included in the regression. This suggests that part of the gender difference is due to the fact that
women are somewhat more likely to be in the lower-earner MA group than in the higher-earner
professional or PhD groups. But only a small part. We shall return to this finding later when we try
to understand the causes of gender differences in earnings.
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10.10 Interactions: Uncovering Different Slopes across Groups

Including binary variables for various categories of a qualitative variable uncovers average differences
in y. But sometimes we want to know something more: whether and howmuch the slope with respect
to a third variable differs by those categories. Multiple linear regression can uncover that too, with
appropriate definition of the variables.

More generally, we can use the method of linear regression analysis to uncover how association
between y and x varies by values of a third variable z. Such variation is called an interaction, as it
shows how x and z interact in shaping average y. In medicine, when estimating the effect of x on
y, if that effect varies by a third variable z, that z is called a moderator variable. Examples include
whether malnutrition, immune deficiency, or smoking can decrease the effect of a drug to treat an
illness. Non-medical examples of interactions include whether and how the effect of monetary policy
differs by the openness of a country, or whether and how the way customer ratings are related to
hotel prices differs by hotel stars.

Multiple regression offers the possibility to uncover such differences in patterns. For the simplest
case, consider a regression with two explanatory variables: x1 is quantitative; x2 is binary. We wonder
if the relationship between average y and x1 is different for observations with x2 = 1 than for x2 = 0.
How shall we uncover that difference?

A multiple regression that includes x1 and x2 estimates two parallel lines for the y–x1 pattern: one
for those with x2 = 0 and one for those with x2 = 1.

yE = β 0 + β 1x1 + β 2x2 (10.11)

The slope of x1 is β 1 and is the same in this regression for observations in the x2 = 0 group and
observations in the x2 = 1 group. β 2 shows the average difference in y between observations that are
different in x2 but have the same x1. Since the slope of x1 is the same for the two x2 groups, this β 2
difference is the same across the range of x1. This regression does not allow for the slope in x1 to be
different for the two groups. Thus, this regression cannot uncover whether the y–x1 pattern differs in
the two groups.

Denote the expected y conditional on x1 in the x2 = 0 group as yE
0 , and denote the expected y

conditional on x1 in the x2 = 1 group as yE
1 . Then, the regression above implies that the intercept is

different (higher by β 2 in the x2 = 1 group) but the slopes are the same:
First group, x2 = 0

yE
0 = β 0 + β 1x1 (10.12)

Second group, x2 = 1

yE
1 = β 0 + β 2 × 1 + β 1x1 (10.13)

If we want to allow for different slopes in the two x2 groups, we have to do something different. That
difference is including the interaction term. An interaction term is a new variable that is created
from two other variables, by multiplying one by the other. In our case:

yE = β 0 + β 1x1 + β 2x2 + β 3x1x2 (10.14)
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Not only are the intercepts different; the slopes are different, too:

yE
0 = β 0 + β 1x1 (10.15)

yE
1 = β 0 + β 2 + (β 1 + β 3)x1 (10.16)

It turns out that the coefficients of this regression can be related to the coefficients of two simple
regressions of y on x1, estimated separately in the two x2 groups:

yE
0 = γ0 + γ1x1 (10.17)

yE
1 = γ2 + γ3x1 (10.18)

What we have is γ0 = β 0; γ1 = β 1; γ2 = β 0 + β 2; and γ3 = β 1 + β 3.
In other words, the separate regressions in the two groups and the regression that pools observa-

tions but includes an interaction term yield exactly the same coefficient estimates. The coefficients of
the separate regressions are easier to interpret. But the pooled regression with interaction allows for
a direct test of whether the slopes are the same. H0 : β 3 = 0 is the null hypothesis for that test; thus
the simple t-test answers this question.

We can mix these tools to build ever more complicated multiple regressions. Binary variables can be
interacted with other binary variables . Binary variables created from qualitative explanatory variables
with multiple categories can all be interacted with other variables. Piecewise linear splines or poly-
nomials may be interacted with binary variables. More than two variables may be interacted as well.
Furthermore, quantitative variables can also be interacted with each other, although the interpretation
of such interactions is more complicated.

Review Box 10.7 Interactions of right-hand-side variables in multiple linear regression

• Interactions between right-hand-side variables in a linear regression allow for the slope coeffi-
cient of a variable to differ by values of another variable.

• Interactions between two right-hand-side variables are modeled in a linear regression as
yE = β 0 + β 1x1 + β 2x2 + β 3x1x2.

• β 1 shows average differences in y corresponding to a one-unit difference in x1 when x2 = 0.
• β 2 shows average differences in y corresponding to a one-unit difference in x2 when x1 = 0.
• β 3 is the coefficient on the interaction term. It shows the additional average differences in y

corresponding to a one-unit difference in x1 when x2 is one unit larger, too. (It’s symmetrical in
x1 and x2 so it also shows the additional average differences in y corresponding to a one-unit
difference in x2 when x1 is one unit larger, too.)

• When one of the two right-hand-side variables is binary, a simpler interpretation is also true.
Say, x2 = 0 or 1. Then,
◦ β 1 shows the average difference in y corresponding to a one-unit difference in x1 when x2 = 0;
◦ β 1 + β 3 shows the average difference in y corresponding to a one-unit difference in x1 when

x2 = 1;
◦ the coefficients of the regression are the same as the coefficients of two separate regressions

on two parts of the data, one with x2 = 0 and one with x2 = 1:
if x2 = 0: yE = β 0 + β 1x1

if x2 = 1: yE = (β 0 + β 2) + (β 1 + β 3)x1
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10.A5 CASE STUDY – Understanding the Gender Difference
in Earnings

Interactions

We turn to illustrating the use of interactions as we consider the question of whether the patterns
with age are similar or different for men versus women. As we discussed, we can investigate
this in two ways that should lead to the same result: estimating regressions separately for men
and women and estimating a regression that includes age interacted with gender. This regression
model with an interaction is

(ln w)E = β 0 + β 1 × age + β 2 × female + β 3 × age ∗ female (10.19)

Table 10.4 shows the results with age entered in a linear fashion. Column (1) shows the results for
women, column (2) for men, column (3) for women and men pooled, with interactions. To have
a better sense of the differences, which are often small, the table shows coefficients up to three
digits.

Table 10.4 Gender differences in earnings – log earnings, gender, age, and their interaction

(1) (2) (3)
Variables Women Men All

female −0.036
(0.035)

age 0.006** 0.009** 0.009**
(0.001) (0.001) (0.001)

female × age −0.003**
(0.001)

Constant 3.081** 3.117** 3.117**
(0.023) (0.026) (0.026)

Observations 9 685 8 556 18 241
R-squared 0.011 0.028 0.047

Note: Column (1) is women only; column (2) is men only; column (3) includes all employees. Robust standard error
estimates in parentheses. ** p<0.01, * p<0.05.

Source: cps-earnings dataset. USA, 2014. Employees of age 24–65 with a graduate degree and 20 or more
work hours per week.

According to column (1) of Table 10.4, women who are one year older earn 0.6% more, on
average. According to column (2), men who are one year older earn 0.9% more, on average.
Column (3) repeats the age coefficient for men. Then it shows that the slope of the log earnings–
age pattern is, on average, 0.003 less positive for women, meaning that the earnings advantage
of women who are one year older is 0.3 percentage points smaller than the earnings advantage
of men who are one year older.
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The advantage of the pooled regression, is its ability to allow for direct inference about gender
differences. The 95% CI of the gender difference in the average pattern of ln wages and age is
[−0.005,−0.001]. Among employees with a post-graduate degree in the USA in 2014, the wage
difference corresponding to a one year difference in age was 0.1 to 0.5 percentage points less
for women than for men. This confidence interval does not include zero. Accordingly, the t-test
of whether the difference is zero rejects its null at the 5% level, suggesting that we can safely
consider the difference as real in the population (as opposed to a chance event in the particular
dataset); we are less than 5% likely to make a mistake by doing so.

The coefficient on the female variable in the pooled regression is −0.036. This is equal to the
difference of the two regression constants: 3.081 for women and 3.117 for men. Those regres-
sion constants do not have a clear interpretation here (average log earnings when age is zero are
practically meaningless). Their difference, which is actually the coefficient on female in the pooled
regression, shows the average gender difference between employees with zero age. Similarly to the
constants in the separate regressions, the coefficient is meaningless for any substantive purpose.
Nevertheless, the regression needs it to have an intercept with the ln w axis.
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(a) Log earnings on age interacted with gender
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Figure 10.2 Earning differences by gender as function of age

Note: Regression lines (curves) and 95% confidence intervals from regression of log earnings on age interacted with gender.
Source: cps-earnings dataset. USA, 2014. Employees of age 24–65 with a graduate degree and 20 or more work hours per
week. N=18241.

Taking the coefficients on female, age, and female × age together, the regression allows us
to calculate the average gender difference by age. This exercise takes the linear functional form
seriously, an assumption we know is false. We shall repeat this exercise with a better approximation
of the nonlinear patterns. For now, let’s stick to the linear specification, for educational purposes.
The youngest people in our sample are 25 years old. Starting with the separate regressions, the
predicted log wage for women of age 25 is 3.081 + 25 × 0.006 ≈ 3.231. For men, 3.117 + 25 ×
0.009 ≈ 3.342. The difference is −0.11. We get the same number from the pooled regression: the
gender difference at age 25 should be the gender difference at age zero implied by the coefficient
on female plus 25 times the difference in the slope by age, the coefficient on the interaction term
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female× age: −0.036+ 25×−0.003 ≈ −0.11. Carrying out the same calculations for age 45 yields
a difference of −0.17. These results imply that the gender difference in average earnings is wider
for older ages.

Figure 10.2a shows the relationship graphically. It includes two lines with a growing gap: earn-
ings difference is higher for older age. Remember, our regression can capture this growing gap
because it includes the interaction. Without the interaction, we would not be able to see this, as
that specification would force two parallel lines at constant distance.

However, we know that the pattern on age and (log) earnings is not linear. Our earlier results
indicate that a fourth-order polynomial is a better approximation to that pattern. To explore
whether the shapes of the age–earnings profiles are different between women and men, we
re-estimated the regression with age in a fourth-order polynomial interacted with gender:

(ln w)E = β 0 + β 1age + β 2age2 + β 3age3 + β 4age4 + β 5female + β 6female × age
+β 7female × age2 + β 8female × age3 + β 9female × age4 (10.20)

This is a complicated regression with coefficients that are practically impossible to interpret. We
don’t show the coefficient estimates here. Instead we visualize the results. The graph in Figure
10.2b shows the predicted pattern (the regression curves) for women and men, together with the
confidence intervals of the regression lines (curves here), as introduced in Chapter 9, Section 9.3.

Figure 10.2a suggests that the average earnings difference is a little less than 10% between
ages 25 and 30, increases to around 15% by age 40, and reaches 22% by age 50, from where
it decreases slightly to age 60 and more by age 65. These differences are likely similar in the
population represented by the data as the confidence intervals around the regression curves are
rather narrow, except at the two ends.

These results are very informative. Many factors may cause women with a graduate degree to
earn less than men. Some of those factors are present at young age, but either they are more
important in middle age, or additional factors start playing a role by then.

What can students infer from these results about the gender differences they may experience
through their careers? Statistical inference established that the patterns are very likely present in
the population represented by the data: employees with graduate degrees in the USA in 2014. The
first question of external validity is whether similar patterns are likely to be true in the future as well
and, if we are interested in another country, whether the patterns are similar there. The second
question is the extent to which differences by age in the cross-section are informative about what
we can expect to happen through time as people age. As we discussed earlier, those questions
are impossible to answer with this data. Analyzing more data may help some but will never give
a definitive answer to all questions. Nevertheless, the information produced by our analysis is a
good starting point.

10.11 Multiple Regression and Causal Analysis

When interpreting regression coefficients, we advise being careful with the language, talking about
differences and associations not effects and causation. But, can we say anything regarding the extent
to which our results may indicate a causal link?
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This question is all the more relevant because one main reason to estimate multiple regressions is to
get closer to a causal interpretation. By conditioning on other observable variables, we can get closer
to comparing similar objects – “apples to apples” – even in observational data. But getting closer is
not the same as getting there.

For example, estimating the effect of a training program at a firm on the performance of employ-
ees would require comparing participants to non-participants who would perform similarly to how
participants would without the program. A randomized experiment ensures such comparability. By
randomly deciding who participates and who does not participate, we get two groups that are very
similar in everything that is relevant, including what their future performance would be without the
program. If, instead of a random rule, employees decided for themselves whether they participate
in the program, a simple comparison of participants to non-participants would not measure the
effect of the program because participants may have achieved different performance without the
training.

The difference is between data from controlled experiments and observational data . Simple com-
parisons don’t uncover causal relations in observational data. In principle, we may improve this by
conditioning on every potential confounder: variables that would affect y and the causal variable x1

at the same time. (In the training example, these are variables that would make participants and non-
participants achieve different performance without the training, such as skills and motivation.) Such
a comparison is called ceteris paribus.

But, importantly, conditioning on everything is impossible in general. Ceteris paribus prescribes
what we want to condition on; a multiple regression can condition on what’s in the data the way it is
measured.

One more caveat. Not all variables should be included as covariates even if correlated both with the
causal variable and the dependent variable. Such variables are called bad conditioning variables,
or bad control variables. Examples include variables that are actually part of the causal mechanism,
for example, how much participants in the training program actually learn.

What variables to include in a multiple regression and what variables not to include when aiming
to estimate the effect of x on y is a difficult question. Chapter 19 will discuss this question along with
the more general question of whether and when conditioning on other variables can lead to a good
estimate of the effect of x on y, and what we mean by such an effect in the first place.

10.A6 CASE STUDY – Understanding the Gender Difference
in Earnings

Thinking about cause and effect and getting closer to estimating it viamultiple regression

Figure 10.2a showed a large and relatively stable average gender difference in earnings between
ages 40 and 60 in the data and the population it represents (employees with a graduate degree in
the USA in 2014). What might cause that difference?

One potential explanation is labor market discrimination. Labor market discrimination means
that members of a group (women, minorities) earn systematically less per hour than members of
another group (men, the majority) even if they have the same marginal product. Marginal product
simply means their contribution to the sales of their employer by working one additional hour.
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If one hour of work by women brings as much for the employer as one hour of work by men,
they should earn the same, at least on average. There may be individual deviations for various
reasons due to mistakes and special circumstances, but there should not be systematic differences
in earnings per hour.

Note that this concept of labor market discrimination is quite narrow. For example, women may
earn less on average because they are less frequently promoted to positions in which their work
could have a higher effect on company sales. That would not count as labor market discrimination
according to this narrow definition. A broader notion of discrimination would want to take that
into account. An even broader concept of social inequality may recognize that women may choose
occupations with flexible or shorter hours of work due to social norms about division of labor in
the family. That may result in the over-representation of women in jobs that offer lower wages in
return for more flexible hours.

Let’s use our data to shed some light on these issues. Starting with the narrow def-
inition of labor market discrimination, we have a clear steer as to what ceteris paribus
analysis would be: condition on marginal product, or everything that matters for marginal
product (and may possibly differ by gender). These may include cognitive skills, motiva-
tion, the ability to work efficiently in teams, and so on. Real-life data does not include all
those variables. Indeed, our data has very little on skills: three broad categories of gradu-
ate degree and age. We may add race, ethnicity, and whether a person was born in the
USA that may be related to the quality of education as well as other potential sources of
discrimination.

To shed light on broader concepts of discrimination, we may want to enrich our regression
by including more covariates. One example is occupation. Women may choose occupations that
offer shorter and more flexible hours in exchange for lower wages. For the narrow concept of
discrimination, we would like to condition on occupation, because we would want to compare
women andmenwith the samework tasks. For the broad concept, wewould not want to condition
on it, because choice of occupation is affected by social norms about gender. Similar variables are
industry, union status, hours worked, or whether the employer is private, nonprofit, or government.

Table 10.5 shows the results of those regressions. Some regressions have many explanatory
variables. Instead of showing the coefficients of all, we show the coefficient and standard error of
the variable of focus: female. The subsequent rows of the table indicate which variables are included
as covariates. This is in fact a standard way of presenting results of large multiple regressions that
focus on a single coefficient.

The data used for these regressions in Table 10.5 is a subset of the data used previously: it
contains employees of age 40 to 60 with a graduate degree who work 20 hours per week or
more. We focus on this age group because, as we have seen, this group has the largest average
gender difference in earnings. We have 9816 such employees in our data.

Column (1) shows that women earn 22.4% less than men, on average, in the data (employ-
ees of age 40 to 60 with a graduate degree who work 20 hours or more). When we condition
on age and the two binary variables of education, the difference is only slightly less, 21.2% (col-
umn (2)). This small difference appears to suggest that differences in age and education do not
contribute to gender differences in earnings. However, our measures of education are only two
binary variables of degree level, and more detailed data may imply a larger role of educational
differences.
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Table 10.5 Gender differences in earnings – regression with many covariates on a narrower sample

(1) (2) (3) (4)
Variables ln wage ln wage ln wage ln wage

female −0.224** −0.212** −0.151** −0.141**
(0.012) (0.012) (0.012) (0.012)

Age and education YES YES YES
Family circumstances YES YES
Demographic background YES YES
Job characteristics YES YES
Age in polynomial YES
Hours in polynomial YES

Observations 9816 9816 9816 9816
R-squared 0.036 0.043 0.182 0.195

Note: Education: professional, PhD. Family circumstances: marital status and number of children. Demographic
background: race, ethnicity, whether US-born. Job characteristics: hours worked, whether employer is federal,
state, local government, or nonprofit; union membership, two-digit industry, and two-digit occupation codes. Age
and hours polynomials are fourth-order. Robust standard error estimates in parentheses. ** p<0.01, * p<0.05.

Source: cps-earnings dataset. USA, 2014. All employees of age 40–60 with a graduate degree and 20 or more
work hours per week.

Column (3) includes all other covariates. The gender difference is 15.1%. When we compare
people with the same personal and family characteristics and job features as measured in the
data, women earn 15.1% less than men. Some of these variables are meant to measure job
flexibility, but they are imperfect. Omitted variables include flexibility of hours and commuting
time. Column (4) includes the same variables but pays attention to the potentially nonlinear rela-
tions with the two continuous variables, age and hours worked. The gender difference is very
similar, 14.1%. The confidence intervals are reasonably narrow around these coefficients (±2%).
They suggest that the average gender difference in the data, unconditional or conditional on
the covariates, is of similar magnitude in the population represented by our data to what’s in
the data.

What did we learn from this exercise? We certainly could not safely pin down the role
of labor market discrimination versus other reasons in driving the gender inequality in pay.
Even their relative role is hard to assess from these results as the productivity measures are
few, and the other covariates may be related to discrimination as well as preferences or other
aspects of productivity. Thus, we cannot be sure that the 14.1% in column (4) is due to dis-
crimination, and we can’t even be sure if the role of discrimination is larger or smaller than
that.

Nevertheless, our analysis provided some useful facts. The most important of them is that the
gender difference is quite small below age 30, and it’s the largest among employees between
ages 40 and 60. Thus, gender differences, whether due to discrimination or other reasons, tend
to be small among younger employees. In contrast, the disadvantages of women are large among
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middle-aged employees who also tend to be the highest earning employees. This is consistent with
many potential explanations, such as the difficulty of women to advance their careers relative to
men due to “glass ceiling effects” (discrimination at promotion to high job ranks), or differences in
preferences for job flexibility versus career advancement, which, in turn, may be due to differences
in preferences or differences in the constraints the division of labor in families put on women versus
men.

On the methods side, this case study illustrated how to estimate multiple linear regressions,
and how to interpret and generalize their results. It showed how we can estimate and visualize
different patterns of association, including nonlinear patterns, between different groups. It high-
lighted the difficulty of drawing causal conclusions from regression estimates using cross-sectional
data. Nevertheless, it also illustrated that, even in the absence of clear causal conclusions, multiple
regression analysis can advance our understanding of the sources of a difference uncovered by a
simple regression.

10.12 Multiple Regression and Prediction

One frequent reason to estimate a multiple regression is to make a prediction: find the best guess for
the dependent variable, or target variable yj for a particular target observation j, for which we know
the right-hand-side variables x but not y. Multiple regression offers a better prediction than a simple
regression because it includes more x variables.

The predicted value of the dependent variable in a multiple regression for an observation j with
known values for the explanatory variables x1j, x2j, ... is simply

ŷj = β̂ 0 + β̂ 1x1j + β̂ 2x2j + · · · (10.21)

When the goal is prediction, we want the regression to produce as good a fit as possible. More pre-
cisely, we want as good a fit as possible to the general pattern that is representative of the target
observation j. Good fit in a dataset is a good starting point – that is, of course, if our data is represen-
tative of that general pattern. But it’s not necessarily the same. A regression with a very good fit in our
data may not produce a similarly good fit in the general pattern. A common danger is overfitting the
data: finding patterns in the data that are not true in the general pattern. Thus, when using multiple
regression for prediction, we want a regression that provides good fit without overfitting the data.
Finding a multiple regression means selecting right-hand-side variables and functional forms for those
variables. We’ll discuss this issue in more detail when we introduce the framework for prediction in
Chapter 13.

But how can we assess the fit of multiple regressions? Just like with simple regressions, the most
commonly used measure is the R-squared. The R-squared in a multiple regression is conceptually the
same as in a simple regression that we introduced in Chapter 7:

R2 =
Var[ŷ]
Var[y] = 1 − Var[e]

Var[y] (10.22)

where Var[y] = 1
n
∑n

i=1(yi − ȳ)2, Var[ŷ] = 1
n
∑n

i=1(ŷi − ȳ)2, and Var[e] =∑n
i=1(ei)

2. Note that ¯̂y = ȳ,
and ē = 0.

The R-squared is a useful statistic to describe the fit of regressions. For that reason, it is common
practice to report the R-squared in standard tables of regression results.

Unfortunately, the R-squared is an imperfect measure for selecting the best multiple regression for
prediction purposes. The reason is that regressions with the highest R-squared tend to overfit the data.
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When we compare two regressions, and one of them includes all the right-hand-side variables in the
other one plus some more, the regression with more variables always produces a higher R-squared.
Thus, regressions with more right-hand-side variables tend to produce higher R-squared. But that’s
not always good: regressions with more variables have a larger risk of overfitting the data. To see this,
consider an extreme example. A regression with a binary indicator variable for each of the observations
in the data (minus one for the reference category) produces a perfect fit with an R-squared of one. But
such a regression would be completely useless to predict values outside the data. Thus, for variable
selection, alternative measures are used, as we shall discuss it in Chapter 14.

Until we learn about more systematic methods to select the right-hand-side variables in the regres-
sion for prediction, all we can do is to use our intuition. The goal is to have a regression that captures
patterns that are likely to be true for the general pattern for our target observations. Often, that
means including variables that capture substantial differences in y, and not including variables whose
coefficients imply tiny differences. That implies leaving out variables that capture detailed categories
of qualitative variables or complicated interactions. To do really well, we will need the systematic tools
we’ll cover in Chapters 13 and 14.

The last topic in prediction is how we can visualize the fit of our regression. The purpose of such
a graph is to compare values of y to the regression line. We visualized the fit of a simple regression
with a scatterplot and the regression line in the x–y coordinate system. We did something similar with
the age–gender interaction, too. However, with a multiple regression with more variables, we can’t
produce such a visualization because we have too many right-hand-side variables.

Instead, we can visualize the fit of a multiple regression by the ŷ−y plot. This plot has ŷ on the
horizontal axis and y on the vertical axis. The plot features the 45 degree line and the scatterplot
around it. The 45 degree line is also the regression line of y regressed on ŷ. To see this consider that
the regression of y on ŷ shows the expected value of y for values of ŷ. But ŷ is already the expected
value of y conditional on the right-hand-side variables, so the expected value of y conditional on ŷ is
the same as ŷ. Therefore this line connects points where ŷ = y, so it is the 45 degree line.

The scatterplot around this line shows how actual values of y differ from their predicted value ŷ.
The better the fit of the regression, the closer this scatterplot is to the 45 degree line (and the closer
R-squared is to one). This visualization is more informative than the R-squared. For example, we can
use the ŷ−y plot to identify observations with especially large positive or negative residuals. In this
sense, it generalizes the scatterplot with a regression line when we only had a single x.

Review Box 10.8 Prediction with multiple linear regression

• The predicted value of the y variable from a multiple regression is

ŷ = β̂ 0 + β̂ 1x1 + β̂ 2x2 + · · ·

• The ŷ−y plot is a good way to visualize the fit of a prediction. It’s a scatterplot with ŷ on the
horizontal axis and y on the vertical axis, together with the 45 degree line, which is the regression
line of y on ŷ.
◦ observations to the right of the 45 degree line show overpredictions (ŷ > y).
◦ observations to the left of the 45 degree line show underpredictions (ŷ < y).
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10.B1 CASE STUDY – Finding a Good Deal among Hotels with
Multiple Regression

Prediction with multiple regression

Let’s return once more to our example of hotel prices and distance to the city center. Recall that the
goal of the analysis is to find a good deal from among the hotels for the date contained in the data.
A good deal is a hotel that is inexpensive relative to its characteristics. Of those characteristics two
are especially important: the distance of the hotel to the city center and the quality of the hotel.
In the earlier chapters we considered simple regressions with the distance to the city center as
the only explanatory variable. Here we add measures of quality and consider a multiple regression.
Those measures of quality are stars (3, 3.5, or 4) and rating (average customer rating, ranging from
2 to 5).

With prediction, capturing the functional form is often important. Based on earlier explorations
of the price–distance relationship and similar explorations of the price–stars and price–ratings rela-
tionships, we arrived at the following specification. The regression has log price as the dependent
variable, a piecewise linear spline in distance (knots at 1 and 4 miles), a piecewise linear spline in
rating (one knot at 3.5), and binary indicators for stars (one for 3.5 stars, one for 4 stars; 3 stars is
the reference category).

From a statistical point of view, this is prediction analysis. The goal is to find the best predicted
(log) price that corresponds to distance, stars, and ratings of hotels. Thenwe focus on the difference
of actual (log) price from its predicted value.

Good deals are hotels with large negative residuals from this regression. They have a (log)
price that is below what’s expected given their distance, stars, and rating. The more negative the
residual, the lower their log price, and thus their price, compared to what’s expected for them.
Of course, our measures of quality are imperfect. The regression does not consider information
on room size, view, details of location, or features that only photos can show. Therefore the
result of this analysis should be a shortlist of hotels that the decision maker should look into in
more detail.

Table 10.6 shows the five best deals: these are the hotels with the five most negative residuals.
We may compare this list with the list in Chapter 7, Section 4.U1, that was based on the residuals
of a simple linear regression of hotel price on distance. Only two hotels “21912” and “22080”
featured on both lists; hotel “21912” is the best deal now, there it was the second best deal. The
rest of the hotels from Chapter 7 did not make it to the list here. When considering stars and
rating, they do not appear to be such good deals anymore because their ratings and stars are low.
Instead, we have three other hotels that have good measures of quality and are not very far yet
they have relatively low price. This list is a good shortlist to find the best deal after looking into
specific details and photos on the price comparison website.

How good is the fit of this regression? Its R-squared is 0.55: 55 percent in the variation in log
price is explained by the regression. In comparison, a regression with log price and piecewise linear
spline in distance would produce an R-squared of 0.37. Including stars and ratings improved the
fit by 18 percentage points.

The ŷ−y plot in Figure 10.3 visualizes the fit of this regression. The plot features the 45 degree
line. Dots above the line correspond to observations with a positive residual: hotels that have
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Table 10.6 Good deals for hotels: the five hotels with the most negative residuals

Hotel name Price Residual in ln(price) Distance Stars Rating

21912 60 −0.565 1.1 4 4.1
21975 115 −0.405 0.1 4 4.3
22344 50 −0.385 3.9 3 3.9
22080 54 −0.338 1.1 3 3.2
22184 75 −0.335 0.7 3 4.1
Note: List of the five observations with the smallest (most negative) residuals from the multiple regression with
log price on the left-hand side; right-hand-side variables are distance to the city center (piecewise linear spline
with knots at 1 and 4 miles), average customer rating (piecewise linear spline with knot at 3.5), binary variables
for 3.5 stars and 4 stars (reference category is 3 stars).

Source: hotels-vienna dataset. Vienna, November 2017, weekday. Hotels with 3 to 4 stars within 8 miles of
the city center, N=217.

higher price than expected based on the right-hand-side variables. Dots below the line correspond
to observations with a negative residual: hotels that have lower price than expected. The dots that
are furthest down from the line are the candidates for a good deal.

Figure 10.3 ŷ−y plot for log hotel price

Note: Results from a regression of ln price on distance to the city center (piecewise linear spline with knots at
1 and 4 miles), average customer rating (piecewise linear spline with knot at 3.5), binary variables for 3.5
stars and 4 stars (reference category is 3 stars). y is ln price; ŷ is predicted ln price from the regression. Five
best deals denoted with purple.
Source: hotels-vienna dataset. Vienna, November 2017, weekday. Hotels with 3 to 4 stars within 8 miles of
the city center; N=207.
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This concludes the series of case studies using the hotels-vienna dataset to identify the hotels
that are the best deals. We produced a shortlist of hotels that are the least expensive relative to
their distance to the city center and their quality, measured by average customer ratings and stars.

10.13 Main Takeaways

Multiple regression allows for comparing mean y for different values of x for observations with the
same values for the other variables.

• Doing so leads to better predictions and estimates of the slope on x that are usually closer to its
true effect.

• Qualitative variables should be entered as binary variables on the right-hand side of multiple
regressions.

• Interactions can uncover different slopes of one variable by values of another variable (e.g., denoting
different groups).

PRACTICE QUESTIONS

1. The 95% CI of a slope coefficient in a multiple regression is narrower, the larger the R-squared
of the regression. Why?

2. The 95% CI of a slope coefficient in a multiple regression is wider, the more the variable is
correlated with the other right-hand-side variables. Why?

3. What’s the difference between β in yE = α + βx1 and β 1 in yE = β 0 + β 1x1 + β 2x2? Why is this
difference called omitted variable bias?

4. You want to estimate differences in spending on cigarettes by family income, and you are also
interested how this difference in spending varies by the level of education of the adults in the
family. Write down a regression that can uncover those differences, and interpret the
coefficients of that regression. (Hint: you may define education as a binary variable, high versus
low.)

5. Give an example of a multiple regression with two binary right-hand-side variables and their
interaction. Write down the regression and interpret its coefficients.

6. What’s a ŷ−y plot, and what is it good for? Give an example.
7. You want to predict y with the help of ten x variables using multiple linear regression. A

regression that includes the ten variables produces an R-squared of 0.4. A regression that
includes those ten variables together with many of their interactions has 100 variables
altogether, and it produces an R-squared of 0.43. List pros and cons for choosing each of the
two regressions for your prediction.

8. You want to estimate the effect of x on y with the help of a multiple regression. You have 10 z
variables that you want to condition on to get closer to causality. A regression that includes the
ten variables produces a coefficient on x that is 0.40, SE = 0.05. A regression that includes those
ten variables together with many of their interactions gives a coefficient estimate of 0.35 and
SE = 0.10. List pros and cons for choosing each of the two regressions for your causal analysis.
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9. True or false? Why? Multiple regression analysis of observational data shows expected
differences in the dependent variable corresponding to differences of an explanatory variable,
ceteris paribus.

10. In a dataset of a cross-section of cars advertised on an online platform, log price is regressed on
a binary variable that is one if the ad comes from a dealer and zero if it comes from the owner
of the car. The slope coefficient is 0.1. When we add the age of the car to the regression, the
slope coefficient on the same binary variable is 0.05. Interpret both numbers.

11. In the previous example the coefficient on the age of the car is −0.1. Are dealer-advertised cars
older or younger on average? By how much?

12. Log hotel price is regressed on distance to the city center, average customer rating, and number
of stars in a linear regression, using data on a cross-section of hotels in a city. The slope
coefficient on stars is 0.2. Interpret this number.

13. The standard error on the slope coefficient in the previous question is 0.05. What’s its 95% CI
and what does that mean?

14. We are interested in how airline prices are related to the distance traveled and the size of the
market (number of passengers). The data consists of average prices on the most popular
markets (routes) of the USA (e.g., Boston–Chicago) for the year 2018. OLS estimates of our
regression are the following:

(ln price)E = 4.4 + 0.3distance − 0.06passengers (10.23)

where ln price is log price, distance is measured in thousand miles, and passengers is the number
of passengers per day (thousands). Interpret the two slope coefficient estimates.

15. We include the interaction of distance and passengers in the same regression and get a
coefficient estimate of −0.002. Interpret this number. What can we conclude from its inclusion
about the interaction of distance and passengers if the SE is 0.002?

DATA EXERCISES

Easier and/or shorter exercises are denoted by [*]; harder and/or longer exercises are denoted by [**].

1. Re-do the case study on gender difference in earnings by age – using a different group of
employees or a different year in the USA, a different educational group, or a different country.
Compare your results to those in the text and try to explain what you see. [*]

2. Use the hotels-europe dataset and pick a different city or a different date than used in the case
study. Estimate a regression to predict hotel prices (or their log) using stars of the hotel, average
customer ratings, and distance to the city center. Pay attention to functional forms. Argue for the
best regression specification, and use its results to create a shortlist of five hotels that are
underpriced. [**]

3. Use the same data as in the previous exercise and consider adding other variables in the data in
an appropriate functional form. Argue for the best regression specification. Use the results to
create a shortlist of five hotels that are underpriced, and compare this list to the list you produced
in the previous exercise. [**]

4. Use the worldbank-lifeexpectancy dataset on a cross-section of countries. Pick a year. Regress
life expectancy on log GDP per capita separately for different groups of countries (e.g., by
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continent). Then estimate a regression with the group dummies and their interactions with log
GDP per capita. Interpret the coefficients and their 95% CI, and visualize the regression lines.
What do you conclude from this exercise? [**]

5. Football is a global sport; FIFA, its governing body has 211 countries. There is plenty of evidence
that countries’ success in football is correlated with many socio-economic variables. Collect data
on the results of all international games in a recent year, and pick a few socio-economic variables
such as GDP/capita (pick three or more variables). Build a linear regression model to see which
variables are correlated with the goal difference between teams. Create a ŷ−y graph to see
which countries perform better or worse than expected. [**]

REFERENCES AND FURTHER READING

A great reading on the role of regressions in arguing social change is Golbeck (2017).
One example of multivariate regression used in real life is the widespread use of the hedonic price
index. For more on price indexes and hedonic regression, a great resource is Eurostat’s Handbook
on Residential Property Prices Indices (RPPIs) (Eurostat, 2013).

10.U1 UNDER THE HOOD: A TWO-STEP PROCEDURE TO GET
THE MULTIPLE REGRESSION COEFFICIENT

We can get β 1 in the multiple regression from a two-step procedure that involves two simple regres-
sions. There is no practical use for this two-step procedure: we get the exact coefficient we need by
running multiple regression in software. In fact, this procedure is inferior because it produces stan-
dard errors that are wrong. Nevertheless, this procedure may highlight the intuition of how multiple
regression works and how we should interpret its results. Moreover, the procedure, or its underlying
logic, may become useful in substantially more complicated models.

We can get coefficient β̂ 1 in

yE = β 0 + β 1x1 + β 2x2 (10.24)

by (1) regressing x1 on x2:

xE
1 = κ + λx2 (10.25)

and saving the residual e = x1 − κ̂ − λ̂x2 and then (2) regressing y on this residual:

yE = π + ρe (10.26)

The estimated slope coefficients are exactly the same:

β̂ 1 = ρ̂ (10.27)

The procedure is analogous with more right-hand-side variables, only we have to regress x1 on all
other right-hand-side variables in step (1).
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