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Slideshow for the Békés-Kézdi Data Analysis textbook

I Cambridge University Press, 2021

I gabors-data-analysis.com
I Download all data and code:

gabors-data-analysis.com/data-
and-code/

I This slideshow is for Chapter 07
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Motivation

I Spend a night in Vienna and you want to
find a good deal for your stay.

I Travel time to the city center is rather
important.

I Looking for a good deal: as low a price as
possible and as close to the city center as
possible.

I Collect data on suitable hotels
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Topics for today: Simple Regression

Topics for today

Regression basics
Case: Hotels 1
Linear regression
Residuals
Case: Hotels 2
OLS Modeling
Causation
Summary
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Introduction

I Regression is the most widely used method of comparison in data analysis.
I Simple regression analysis amounts to comparing average values of a dependent

variable (y) for observations that are different in the explanatory variable (x).
I Simple regression: comparing conditional means.
I Doing so uncovers the pattern of association between y and x. What you use for y

and for x is important and not inter-changeable!
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Regression

I Simple regression analysis uncovers mean-dependence between two variables.
I It amounts to comparing average values of one variable, called the dependent

variable (y) for observations that are different in the other variable, the explanatory
variable (x).

I Multiple regression analysis involves more variables -> later.
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Regression - uses

I Discovering patterns of association between variables is often a good starting point
even if our question is more ambitious.

I Causal analysis: uncovering the effect of one variable on another variable.
Concerned with a parameter.

I Predictive analysis: what to expect of a y variable (long-run polls, hotel prices)
for various values of another x variable (immediate polls, distance to the city
center). Concerned with predicted value of y using x.
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Regression - names and notation

I Regression analysis is a method that uncovers the average value of a variable y
for different values of another variable x .

E [y |x ] = f (x) (1)

We use a simpler shorthand notation

yE = f (x) (2)

I dependent variable or left-hand-side variable, or simply the y variable,
I explanatory variable, right-hand-side variable, or simply the x variable
I “regress y on x ," or “run a regression of y on x"= do simple regression analysis

with y as the dependent variable and x as the explanatory variable.
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Regression - type of patterns

Regression may find
I Linear patterns: positive (negative) association - average y tends to be higher

(lower) at higher values of x .
I Non-linear patterns: association may be non-monotonic - y tends to be higher

for higher values of x in a certain range of the x variable and lower for higher
values of x in another range of the x variable

I No association or relationship
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Non-parametric and parametric regression

I Non-parametric regressions describe the yE = f (x) pattern without imposing a
specific functional form on f .
I Let the data dictate what that function looks like, at least approximately.
I Can spot (any) patterns well

I Parametric regressions impose a functional form on f . Parametric examples
include:
I linear functions: f (x) = a + bx ;
I exponential functions: f (x) = axb;
I quadratic functions: f (x) = a + bx + cx2,
I or any functions which have parameters of a, b, c , etc.
I Restrictive, but they produce readily interpretable numbers.
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Non-parametric regression

I Non-parametric regressions come (also) in various forms.
I When x has few values and there are many observations in the data, the best and

most intuitive non-parametric regression for yE = f (x) shows average y for each
and every value of x .

I There is no functional form imposed on f here.
I The most straightforward example if you have ordered variables.
I For example, Hotels: average price of hotels with the same numbers of stars and

compare these averages = non-parametric regression analysis.
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Non-parametric regression: bins

I With many x values - two ways to do non-parametric regression analysis: bins and
smoothing.

I Bins - based on grouped values of x
I Bins are disjoint categories (no overlap) that span the entire range of x (no gaps).
I Many ways to create bins - equal size, equal number of observations per bin, or bins

defined by analyst.
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Non-parametric regression: lowess (loess)

I Produce “smooth" graph - both continuous and has no kink at any point.
I also called smoothed conditional means plots = non-parametric regression

shows conditional means, smoothed to get a better image.
I Lowess = most widely used non-parametric regression methods that produce a

smooth graph.
I locally weighted scatterplot smoothing (sometimes abbreviated as “loess").

I A smooth curve fit around a bin scatter.

07. Simple regression 13 / 44 Gábor Békés



Regression basics Case: Hotels 1 Linear regression Residuals Case: Hotels 2 OLS Modeling Causation Summary

Non-parametric regression: lowess (loess)

I Smooth non-parametric regression methods, including lowess, do not produce
numbers that would summarize the yE = f (x) pattern.

I Provide a value yE for each of the particular x values that occur in the data, as
well as for all x values in-between.

I Graph – we interpret these graphs in qualitative, not quantitative ways.
I They can show interesting shapes in the pattern, such as non-monotonic parts,

steeper and flatter parts, etc.
I Great way to find relationship patterns
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Case Study: Finding a good deal among hotels

I We look at Vienna hotels for a 2017 November weekday.
I we focus on hotels that are (i) in Vienna actual,(ii) not too far from the center,

(iii) classified as hotels, (iv) 3-4 stars, and (v) have no extremely high price
classified as error.

I There are 428 hotel prices for that weekday in Vienna, our focused sample has
N = 207 observations.
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Case Study: Finding a good deal among hotels

Bin scatter non-parametric regression, 2 bins Bin scatter non-parametric regression, 4 bins
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Case Study: Finding a good deal among hotels

Scatter and bin scatter non-parametric
regression, 4 bins

Scatter and bin scatter non-parametric
regression, 7 bins
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Case Study: Finding a good deal among hotels

I lowess non-parametric regression,
together with the scatterplot.

I bandwidth selected by software is 0.8
miles.

I The smooth non-parametric
regression retains some aspects of
previous bin scatter – a smoother
version of the corresponding
non-parametric regression with
disjoint bins of similar width.
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Linear regression

Linear regression is the most widely used method in data analysis.
I imposes linearity of the function f in yE = f (x).
I Linear functions have two parameters, also called coefficients: the intercept and

the slope.
yE = α + βx (3)

I Linearity in terms of its coefficients.
I can have any function, including any nonlinear function, of the original variables

themselves
I linear regression is a line through the x − y scatterplot.

I This line is the best-fitting line one can draw through the scatterplot.
I It is the best fit in the sense that it is the line that is closest to all points of the

scatterplot.
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Linear regression - assumption vs approximation

I Linearity as an assumption:
I assume that the regression function is linear in its coefficients.

I Linearity as an approximation.
I Whatever the form of the yE = f (x) relationship, the yE = α + βx regression fits a

line through it.
I This may or may not be a good approximation.
I By fitting a line we approximate the average slope of the yE = f (x) curve.
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Linear regression coefficients

Coefficients have a clear interpretation – based on comparing conditional means.

E [y |x ] = α + βx

Two coefficients:
I intercept: α = average value of y when x is zero:
I E [y |x = 0] = α + β × 0 = α.

I slope: β. = expected difference in y corresponding to a one unit difference in x .
I E [y |x = x0 + 1]− E [y |x0] = (α + β × (x0 + 1))− (α + β × x0) = β.

07. Simple regression 21 / 44 Gábor Békés



Regression basics Case: Hotels 1 Linear regression Residuals Case: Hotels 2 OLS Modeling Causation Summary

Regression - slope coefficient

I slope: β = expected difference in y corresponding to a one unit difference in x .
I y is higher, on average, by β for observations with a one-unit higher value of x .
I Comparing two observations that differ in x by one unit, we expect y to be β

higher for the observation with one unit higher x .

I Avoid “decrease/increase" – not right, unless time series or causal relationship only
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Regression: binary explanatory

Simplest case:
I x is a binary variable, zero or one.
I α is the average value of y when x is zero (E [y |x = 0] = α).
I β is the difference in average y between observations with x = 1 and observations

with x = 0
I E [y |x = 1]− E [y |x = 0] = α + β × 1− α + β × 0 = β.
I The average value of y when x is one is E [y |x = 1] = α + β.

I Graphically, the regression line of linear regression goes through two points:
average y when x is zero (α) and average y when x is one (α + β).
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Regression coefficient formula

Notation:
I General coefficients are α and β.
I Calculated estimates - α̂ and β̂ (use data and calculate the statistic)
I The slope coefficient formula is

β̂ =
Cov [x , y ]

Var [x ]
=

1
n

∑n
i=1(xi − x̄)(yi − ȳ)

1
n

∑n
i=1(xi − x̄)2

I Slope coefficient formula is normalized version of the covariance between x and y .
I The slope measures the covariance relative to the variation in x .
I That is why the slope can be interpreted as differences in average y corresponding to

differences in x .
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Regression coefficient formula

I The intercept – average y minus average x multiplied by the estimated slope β̂.

α̂ = ȳ − β̂x̄

I The formula of the intercept reveals that the regression line always goes through
the point of average x and average y .

I Note, you can manipulate and get: ȳ = α̂ + β̂x̄ .
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Ordinary Least Squares (OLS)

I OLS gives the best-fitting linear
regression line.

I A vertical line at the average value of
x and a horizontal line at the
average value of y . The regression
line goes through the point of
average x and average y .
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More on OLS

I The idea underlying OLS is to find the values of the intercept and slope
parameters that make the regression line fit the scatterplot ‘best’.

I OLS method finds the values of the coefficients of the linear regression that
minimize the sum of squares of the difference between actual y values and their
values implied by the regression, α̂ + β̂x .

minα,β

n∑
i=1

(yi − α− βxi )2

I For this minimization problem, we can use calculus to give α̂ and β̂, the values for
α and β that give the minimum.
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Predicted values

I The predicted value of the dependent variable = best guess for its average value
if we know the value of the explanatory variable, using our model.

I The predicted value can be calculated from the regression for any x .
I The predicted values of the dependent variable are the points of the regression line

itself.
I The predicted value of dependent variable y is denoted as ŷ .

ŷ = α̂ + β̂x

I Predicted value can be calculated for any model of y .
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Residuals

I The residual is the difference between the actual value of the dependent variable
for an observation and its predicted value :

ei = yi − ŷi , where ŷi = α̂ + β̂xi

I The residual is meaningful only for actual observation. It compares observation i ’s
difference for actual and predicted value.

I The residual is the vertical distance between the scatterplot point and the
regression line.
I For points above the regression line the residual is positive.
I For points below the regression line the residual is negative.
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Some further comments on residuals

I The residual may be important on its own right.

I Residuals sum up to zero if a linear regression is fitted by OLS.
I It is a property of OLS: E [ei ] = 0
I Remember: we minimized the sum of squared errors...
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Case Study: Finding a good deal among hotels

I The linear regression of hotel prices
(in $) on distance (in miles) produces
an intercept of 133 and a slope -14.

I The intercept is 133, suggesting that
the average price of hotels right in
the city center is $ 133.

I The slope of the linear regression is
-14. Hotels that are 1 mile further
away from the city center are, on
average, $ 14 cheaper in our data.
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Case Study: Finding a good deal among hotels

I Residual is vertical distance
I Positive residual shown here - price is

above what predicted by regression
line
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Case Study: Finding a good deal among hotels

I Can look at residuals from linear
regressions

I Centered around zero
I Both positive and negative
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Case Study: Finding a good deal among hotels

I If linear regression is
accepted model for
prices

I Draw a scatterplot with
regression line

I With the model you can
capture the over and
underpriced hotels
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Case Study: Finding a good deal among hotels

A list of the hotels with the five lowest value of the residual.

No. Hotel_id Distance Price Predicted price Residual

1 22080 1.1 54 116.17 -62.17
2 21912 1.1 60 116.17 -56.17
3 22152 1 63 117.61 -54.61
4 22408 1.4 58 111.85 -53.85
5 22090 0.9 68 119.05 -51.05

I Bear in mind, we can (and will) do better - this is not the best model for price
prediction.
I Non-linear pattern
I Functional form
I Taking into account differences beyond distance
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Model fit - R2

I Fit of a regression captures how predicted values compare to the actual values.
I R-squared (R2) – how much of the variation in y is captured by the regression,

and how much is left for residual variation

R2 =
Var [ŷ ]

Var [y ]
= 1− Var [e]

Var [y ]
(4)

where, Var [ŷ ] = 1
n

∑n
i=1(ŷi − ȳ)2, and Var [e] = 1

n

∑n
i=1(ei )

2.
I Decomposition of the overall variation in y into variation in predicted values

“explained by the regression") and residual variation ( “not explained by the
regression"):

Var [y ] = Var [ŷ ] + Var [e] (5)
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Model fit - R2

I R-squared (or R2) can be defined for both parametric and non-parametric
regressions.

I Any kind of regression produces predicted ŷ values, and all we need to compute R2

is its variance compared to the variance of y .
I The value of R-squared is always between zero and one.
I R-squared is zero, if the predicted values are just the average of the observed

outcome ŷi = ȳi ,∀i .
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Model fit - how to use R2

I R-squared may help in choosing between different versions of regression for the
same data.
I Choose between regressions with different functional forms
I Predictions are likely to be better with high R2

I More on this in Part III.

I R-squared matters less when the goal is to characterize the association between y
and x

07. Simple regression 38 / 44 Gábor Békés



Regression basics Case: Hotels 1 Linear regression Residuals Case: Hotels 2 OLS Modeling Causation Summary

Correlation and linear regression

I Linear regression is closely related to correlation.
I Remember, the OLS formula for the slope

β̂ =
Cov [y , x ]

Var [x ]

I In contrast with the correlation coefficient, its values can be anything.
Furthermore y and x are not interchangeable.

I Covariance and correlation coefficient can be substituted to get β̂:

β̂ = Corr [x , y ]
Std [y ]

Std [x ]

I Covariance, the correlation coefficient, and the slope of a linear regression capture
similar information: the degree of association between the two variables.

07. Simple regression 39 / 44 Gábor Békés



Regression basics Case: Hotels 1 Linear regression Residuals Case: Hotels 2 OLS Modeling Causation Summary

Correlation and R2 in linear regression

I R-squared of the simple linear regression is the square of the correlation coefficient.

R2 = (Corr [y , x ])2

I So the R-squared is yet another measure of the association between the two
variables.

I To show this equality holds, the trick is to substitute the numerator of R-squared
and manipulate:

R2 =
Var [ŷ ]

Var [y ]
=

Var [α̂ + β̂x ]

Var [y ]
=
β̂2Var [x ]

Var [y ]
=

(
β̂
Std [x ]

Std [y ]

)2

= (Corr [y , x ])2
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Reverse regression

I One can change the variables, but the interpretation is going to change as well!

xE = γ + δy

I The OLS estimator for the slope coefficient here is δ̂ = Cov [y ,x]
Var [y ] .

I The OLS slopes of the original regression and the reverse regression are related:

β̂ = δ̂
Var [y ]

Var [x ]

I Different, unless Var [x ] = Var [y ],
I but always have the same sign.
I both are larger in magnitude the larger the covariance.

I R2 for the simple linear regression and the reverse regression is the same.
07. Simple regression 41 / 44 Gábor Békés



Regression basics Case: Hotels 1 Linear regression Residuals Case: Hotels 2 OLS Modeling Causation Summary

Regression and causation

I Be very careful to use neutral language, not talk about causation, when doing
simple linear regression!

I Think back to sources of variation in x
I Do you control for variation in x? Or do you only observe them?

I Regression is a method of comparison: it compares observations that are different
in variable x and shows corresponding average differences in variable y .
I Regardless of the relation of the two variable.

07. Simple regression 42 / 44 Gábor Békés



Regression basics Case: Hotels 1 Linear regression Residuals Case: Hotels 2 OLS Modeling Causation Summary

Regression and causation - possible relations

I Slope of the yE = α + βx regression is not zero in our data
I Several reasons, not mutually exclusive:

I x causes y :
I y causes x .
I A third variable causes both x and y (or many such variables do):

I In reality if we have observational data, there is a mix of these relations.
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Summary take-away

I Regression – method to compare average y across observations with different
values of x .

I Non-parametric regressions (bin scatter, lowess) visualize complicated patterns of
association between y and x , but no interpretable number.

I Linear regression – linear approximation of the average pattern of association y
and x

I In yE = α + βx , β shows how much larger y is, on average, for observations with
a one-unit larger x

I When β is not zero, one of three things (+ any combination) may be true:
I x causes y
I y causes x
I a third variable causes both x and y .

I If you are to study more econometrics, advanced statistics - Go through textbook
under the hood derivations sections!
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