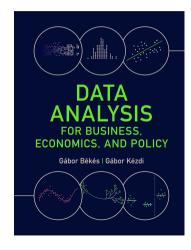
08. Complicated patterns and messy data

Gábor Békés

Data Analysis 2: Regression analysis

2020

Slideshow for the Békés-Kézdi Data Analysis textbook



- ► Cambridge University Press, 2021
- gabors-data-analysis.com
 - Download all data and code: gabors-data-analysis.com/dataand-code/
- ► This slideshow is for Chapter 08

Motivation

- ► Interested in the pattern of association between life expectancy in a country and how rich that country is.
 - Uncovering that pattern is interesting for many reasons: discovery and learning from data.
- ▶ Identify countries where people live longer than what we would expect based on their income, or countries where people live shorter lives.
 - Analyzing regression residuals.
 - ▶ Getting a good approximation of the $y^E = f(x)$ function is important.

Functional form

- Relationships between y and x are often complicated!
- When and why care about the shape of a regression?
- How can we capture function form better?
 - ▶ This class is about transforming variables in a simple linear regression.

Functional form - linear approximation

▶ Linear regression – linear approximation to a regression of unknown shape:

$$y^E = f(x) \approx \alpha + \beta x$$

- Modify the regression to better characterize the nonlinear pattern if,
 - we want to make a prediction or analyze residuals better fit
 - we want to go beyond the average pattern of association good reason for complicated patterns
 - ▶ all we care about is the average pattern of association, but the linear regression gives a bad approximation to that - linear approximation is bad
- Not care
 - ▶ if all we care about is the average pattern of association,
 - ▶ if linear regression is good approximation to the average pattern

Functional form - types

There are many types of non-linearities!

- Linearity is one special cases of functional forms.
- ▶ We are covering the most commonly used transformations:
 - Ln of natural log transformation
 - Piecewise linear splines
 - Polynomials quadratic form
 - Ratios

Functional form: In transformation

- ► Frequent nonlinear patterns better approximated with *y* or *x* transformed by taking relative differences:
- ▶ In cross-sectional data usually there is no natural base for comparison.
- Taking the natural logarithm of a variable is often a good solution in such cases.
- ▶ When transformed by taking the natural logarithm, differences in variable values we approximate relative differences.
 - Log differences works because differences in natural logs approximate percentage differences!

Logarithmic transformation - interpretation

- \triangleright ln(x) = the natural logarithm of x
 - Sometimes we just say $\log x$ and mean $\ln(x)$. Could also mean $\log x$ of base 10. Here we use $\ln(x)$
- x needs to be a positive number
 - ► In(0) or In(negative number) do not exist
- Log transformation allows for comparison in relative terms percentages!

Claim:

$$\ln(x + \Delta x) - \ln(x) \approx \frac{\Delta x}{x}$$

► The difference between the natural log of two numbers is approximately the relative difference between the two for small differences.

Logarithmic transformation - derivation

From calculus we know:

$$\lim_{x \to x_0} \frac{\ln(x) - \ln(x_0)}{x - x_0} = \frac{1}{x_0}$$

▶ By definition it means a small change in x or $\Delta x = x - x_0$. Manipulating the equation, we get:

$$\lim_{\Delta x \to 0} \ln(x_0 + \Delta x) - \ln(x_0) = \lim_{\Delta x \to 0} \frac{\Delta x}{x_0}$$

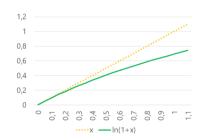
▶ If Δx is not converging to 0, this is an approximation of percentage changes.

$$ln(x_0 + \Delta x) - ln(x_0) \approx \frac{\Delta x}{x_0}$$

- Numerical examples $(x_0 = 1)$:
 - $\Delta x = 0.01 \text{ or } 1\% \text{ larger: } \ln(1+0.01) = \ln(1.01) = 0.0099 \approx 0.01$
 - $\Delta x = 0.1$ or 10% larger: $\ln(1+0.1) = \ln(1.1) = 0.095 \approx 0.1$

Log approximation: what is considered small?

- Log differences are good approximations for small relative differences!
- \triangleright When $\triangle x$ is considered small?
 - ▶ Rule of thumb: 0.3 (30% difference) or smaller
- ▶ But for larger x, there is a considerable difference,
 - ► A log difference of +1.0 corresponds to a +170 percentage point difference
 - ► A log difference of -1.0 corresponds to a -63% percentage point difference
- ► In case of large differences you may have to calculate percentage change by hand



When to take logs?

- Comparison makes mores sense in relative terms
 - Percentage differences
- Variable is positive value
 - ► There are some tricks to deal with 0s and negative numbers, but these are not so robust techniques.
- Most important examples:
 - Prices
 - Sales, turnover, GDP
 - Population, employment
 - Capital stock, inventories
- ▶ You may take the log for y or x or both!
 - ► These yield different models!

$$In(y)^E = \alpha + \beta x_i$$
 - 'log-level' regression

- ► log y, level x
- $ightharpoonup \alpha$ is average ln(y) when x is zero. (Often meaningless.)
- \triangleright β : y is $\beta * 100$ percent higher, on average for observations with one unit higher x.

$$In(y)^E = \alpha + \beta x_i$$
 - 'log-level' regression

- ► log y, level x
- \triangleright α is average ln(y) when x is zero. (Often meaningless.)
- \triangleright β : y is $\beta * 100$ percent higher, on average for observations with one unit higher x.

$$y^E = \alpha + \beta \ln(x_i)$$
 - 'level-log' regression

- level y, log x
- $ightharpoonup \alpha$ is : average y when ln(x) is zero (and thus x is one).
- \triangleright β : y is $\beta/100$ units higher, on average, for observations with one percent higher x.

$$In(y)^E = \alpha + \beta x_i$$
 - 'log-level' regression

- ► log y, level x
- $ightharpoonup \alpha$ is average ln(y) when x is zero. (Often meaningless.)
- \triangleright β : y is $\beta * 100$ percent higher, on average for observations with one unit higher x.

$$y^E = \alpha + \beta \ln(x_i)$$
 - 'level-log' regression

- level y, log x
- $ightharpoonup \alpha$ is : average y when ln(x) is zero (and thus x is one).
- \triangleright β : y is $\beta/100$ units higher, on average, for observations with one percent higher x.

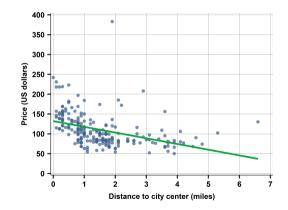
$$ln(y)^E = \alpha + \beta ln(x_i)$$
 - 'log-log' regression

- ► log y, log x
- $ightharpoonup \alpha$: is average ln(y) when ln(x) is zero. (Often meaningless.)
- \triangleright β : **y** is β percent higher on average for observations with one percent higher x.

- Precise interpretation is key
- ► The interpretation of the slope (and the intercept) coefficient(s) differs in each case!
- ▶ Often verbal comparison is made about a 10% difference in x if using level-log or log-log regression.

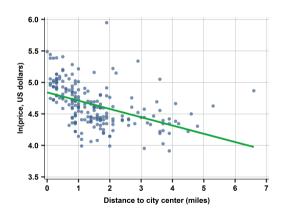
Hotel price-distance regression and functional form

- $ightharpoonup price_i = 132.02 14.41 * distance_i$
- ► Issue ?



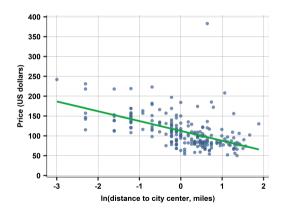
Hotel price-distance regression and functional form - log-level

- ► $ln(price_i) = 4.84 0.13 * distance_i$
- Better approximation to the average slope of the pattern.
 - Distribution of log price is closer to normal than the distribution of price itself.
 - Scatterplot is more symmetrically distributed around the regression line



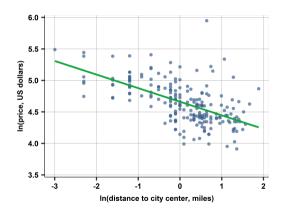
Hotel price-distance regression and functional form - level-log

- $ightharpoonup price_i = 116.29 28.30 * ln(distance_i)$
- We now make comparisons in terms percentage difference in distance
 - ▶ This transformation focuses on the lower and upper part of the domain in *x*: smaller values have even smaller log-values, while large values become closer to the average value.



Hotel price-distance regression and functional form - log-log

- $\ln(price_i) =$ $4.70 0.25 * \ln(distance_i)$
- Comparisons relative terms for both price and distance



Comparing different models

Table: Hotel price and distance regressions

Variables	(1) price	(2) In(price)	(3) price	(4) In(price)
Distance to city center, miles	-14.41	-0.13		
In(distance to city center)			-24.77	-0.22
Constant	132.02	4.84	112.42	4.66
Observations	207	207	207	207
R-squared	0.157	0.205	0.280	0.334

Source: hotels-vienna dataset. Prices in US dollars, distance in miles.

Hotel price-distance regression interpretations

- price-distance: hotels that are 1 mile farther away from the city center are 14 US dollars less expensive, on average.
- ► In(price) distance: hotels that are 1 mile farther away from the city center are 13 percent less expensive, on average.
- price In(distance): hotels that are 10 percent farther away from the city center are 2.477 US dollars less expensive, on average.
- ▶ ln(price) ln(distance): hotels that are 10 percent farther away from the city center are 2.2 percent less expensive, on average.

To Take log or Not to Take log - substantive reason

Decide for substantive reason:

- ► Take logs if variable is likely affected in multiplicative ways
- Don't take logs if variable is likely affected in additive ways

Decide for statistical reason:

- ▶ Linear regression is better at approximating average differences if distribution of dependent variable is closer to normal.
- ► Take logs if skewed distribution with long *right* tail
- Most often the substantive and statistical arguments are aligned

Comparing different models - model choice

Table: Hotel price and distance regressions

Variables	(1) price	(2) In(price)	(3) price	(4) In(price)
Distance to city center, miles	-14.41	-0.13		
In(distance to city center)			-24.77	-0.22
Constant	132.02	4.84	112.42	4.66
Observations	207	207	207	207
R-squared	0.157	0.205	0.280	0.334

Source: hotels-vienna dataset. Prices in US dollars, distance in miles.

Model choice - substantive reasoning

- ▶ It depends on the goal of the analysis!
- Prices
 - We are after a good deal on a single night absolute price differences are meaningful.
 - Percentage differences in price may remain valid if inflation and seasonal fluctuations affect prices proportionately.
 - Or we are after relative differences we do not mind about the magnitude that we are paying, we only need the best deal.
- Distance
 - ▶ Distance makes more sense in miles than in relative terms given our purpose is to find a *relatively* cheap hotel.

Model choice - statistical reasoning

- Visual inspection
 - ▶ Log price models capture patterns better, this could be preferred.
- ightharpoonup Compare fit measure (R^2)
 - ► Level-level and level-log regression: R-squared of the level-log regression is higher, suggesting a better fit.
 - ► Log-level and log-log regression: R-squared of the log-log regression is higher, suggesting a better fit.
- ► Should not compare R-squared of two regressions with *different dependent* variables compares fit in different units!

Model choice - statistical reasoning

- Visual inspection
 - ▶ Log price models capture patterns better, this could be preferred.
- ightharpoonup Compare fit measure (R^2)
 - ► Level-level and level-log regression: R-squared of the level-log regression is higher, suggesting a better fit.
 - Log-level and log-log regression: R-squared of the log-log regression is higher, suggesting a better fit.
- ► Should not compare R-squared of two regressions with *different dependent* variables compares fit in different units!
- Final verdict:
 - log-log probably the best choice:
 - can interpret in a meaningful way and
 - gives good prediction as this is the goal!
 - ▶ Note: prediction with log dependent variable is tricky.

Piecewise Linear Splines

- ▶ A regression with a piecewise linear spline of the explanatory variable.
 - Results in connected line segments for the mean dependent variable.
 - ▶ Each line segment corresponding to a specific interval of the explanatory variable.
- ► The points of connection are called knots,
 - the line may be broken at each knot so that the different line segments may have different slopes.
 - ightharpoonup A piecewise linear spline with m line segments is broken by m-1 knots.
- ► The places of the knots (the boundaries of the intervals of the explanatory variable) need to be specified by the analyst.
 - R has built-in routines calculate the rest.

Piecewise Linear Splines - formula

- A piecewise linear spline regression results in connected line segments, each line segment corresponding to a specific interval of x.
- The formula for a piecewise linear spline regression with m line segments (and m-1 knots in-between) is:

$$y^{E} = \alpha_{1} + (\beta_{1}x)\mathbb{1}_{x < k_{1}} + (\alpha_{2} + \beta_{2}x)\mathbb{1}_{k_{1} \leq x < k_{2}} + \dots + (\alpha_{m-1} + \beta_{m-1}x)\mathbb{1}_{k_{m-2} \leq x < k_{m-1}} + (\alpha_{m} + \beta_{m}x)\mathbb{1}_{x \geq k_{m-1}}$$

Piecewise Linear Splines - interpretaton

$$y^{E} = \alpha_{1} + (\beta_{1}x)\mathbb{1}_{x < k_{1}} + \ldots + (\alpha_{j} + \beta_{j}x)\mathbb{1}_{k_{j-1} \leq x < k_{j}} \ldots + (\alpha_{m} + \beta_{m}x)\mathbb{1}_{x \geq k_{m-1}}$$

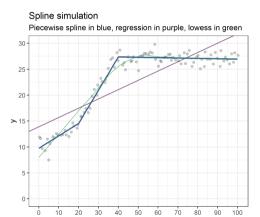
$$j = 2, \ldots, m-1$$

Interpretation of the most important parameters:

- ho α_1 : average y when x is zero, if $k_1 > 0$ (Otherwise: $\alpha_1 + \alpha_j$, where $k_{j-1} \leq 0 < k_j$)
- ▶ β_1 : When comparing observations with x values less than k_1 , y is β_1 units higher, on average, for observations with one unit higher x value.
- ▶ β_j : When comparing observations with x values between k_{j-1} and k_j , y is β_j units higher, on average, for observations with one unit higher x value.
- \triangleright β_m : When comparing observations with x values greater than k_{m-1} , y is β_m units higher, on average, for observations with one unit higher x value.

Simulation for piecewise linear splines

- ► Piecewise linear spline
- ► Knots at 20, 40
- $\sim \alpha = 10$
- $\beta_1 = 0.2$
- $\beta_2 = 0.7$
- $\beta_3 = 0.0$



Overview of piecewise linear spline

- ► A regression with a piecewise linear spline of the explanatory variable
- Handles any kind of nonlinearity
 - ► Including non-monotonic associations of any kind
- Offers complete flexibility
- But requires decisions from the analyst
 - ► How many knots?
 - Where to locate them
 - Decision based on scatterplot, theory / business knowledge
 - Often several trials.
- ► You can make it more complicated:
 - Quadratic, cubic or B-splines → rather a non-parametric approximation: interpretation-fit trade-off
 - Example: term-structure modelling (y: zero-coupon interest rate, x: maturity time) cubic spline is used. Link

Polynomials

- Quadratic function of the explanatory variable
 - ► Allow for a smooth change in the slope
 - Without any further decision from the analyst
- ► Technically: quadratic function is not a linear function (a parabola, not a line)
 - ▶ Handles only nonlinearity, which can be captured by a parabola.
 - Less flexible than a piecewise linear spline, but easier interpretation!

$$y^E = \alpha + \beta_1 x + \beta_2 x^2$$

- Can have higher order polynomials, in practice you may use cubic specification: $v^E = \alpha + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
- General case

$$y^E = \alpha + \beta_1 x + \beta_2 x^2 + \dots + \beta_n x^n$$

Quadratic form - interpretation I.

$$y^E = \alpha + \beta_1 x + \beta_2 x^2$$

- $ightharpoonup \alpha$ is average y when x = 0,
- $ightharpoonup eta_1$ has no interpretation in itself,
- \triangleright β_2 shows whether the parabola is
 - ▶ U-shaped or convex (if $\beta_2 > 0$)
 - ▶ inverted U-shaped or concave (if $\beta_2 < 0$).

Quadratic form - interpretation II.

$$y^E = \alpha + \beta_1 x + \beta_2 x^2$$

Difference in y, when x is different. This leads to (partial) derivative of y^E w.r.t. x,

$$\frac{\partial y^E}{\partial x} = \beta_1 + 2\beta_2 x$$

- \triangleright the slope is different for different values of \times
 - ▶ Compare two observations, j and k, that are different in x, by one unit: $x_k = x_j + 1$.
- ▶ Units which are one unit larger than x_i are higher by $\beta_1 + 2\beta_2 x_i$ in y on average.
 - ▶ Usually we compare to the average of x: $x_i = \bar{x}$.
 - Units which are one unit larger than the average of x are higher by $\gamma = \beta_1 + 2\beta_2 \bar{x}$ in y on average.
- Why, higher order polynomial is rather non-parametric method?

Which functional form to choose? - guidelines

Start with deciding whether you care about nonlinear patterns.

- Linear approximation OK if focus is on an average association.
- ► Transform variables for a better interpretation of the results (e.g. log), and it often makes linear regression better approximate the average association.
- Accommodate a nonlinear pattern if our focus is
 - on prediction,
 - analysis of residuals,
 - about how an association varies beyond its average.
 - ► Keep in mind simpler the better!

Which functional form to choose? - practice

To uncover and include a potentially nonlinear pattern in the regression analysis:

- 1. Check the distribution of your main variables (y and x)
- Uncover the most important features of the pattern of association by examining a scatterplot or a graph produced by a nonparametric regression such as lowess or bin scatter.
- 3. Think and check what would be the best transformation!
 - 3.1 Choose one or more ways to incorporate those features into a linear regression (transformed variables, piecewise linear spline, quadratic, etc.).
 - 3.2 Remember for some variables log transformation or using ratios is not meaningful!
- 4. Compare the results across various regression approaches that appear to be good choices. -> robustness check.

Data Is Messy

- ▶ Clean and neat data exist only in dreams and in some textbooks...
- Data may be messy in many ways!
- Structure, storage type differs from what we want

There are potential issues with the variable(s) itself:

- Some observations are influential
 - ▶ How to handle them? Drop them? Probably not but depends on the context.
- Variables measured with (systematic) error
 - ▶ When does it lead to biased estimates?

Extreme values vs influential observations

- Extreme values concept:
 - Observations with extreme values for some variable
- Extreme values examples:
- Influential observations
 - ► Their inclusion or exclusion influences the regression line
 - Influential observations are extreme values
 - ▶ But not all extreme values are influential observations!
- Influential observations example

Extreme values and influential observations

- ▶ What to do with them?
- ▶ Depends on why they are extreme
 - ► If by mistake: may want to drop them
 - ▶ If by nature: don't want to drop them
 - Grey zone: patterns work differently for them for substantive reasons
 - ► General rule: avoid dropping observations based on value of *y* variable
- Dropping extreme observations by x variable may be OK
 - May want to drop observations with extreme x if such values are atypical for question analyzed.
 - ▶ But often extreme x values are the most valuable as they represent informative and large variation.

Classical Measurement Error

- ▶ You want to measure a variable which is not so easy to measure:
 - Quality of the hotels
 - ► Inflation
 - Other latent variables with proxy measures
- ▶ Usually these miss-measurement are present due to
 - Recording errors (mistakes in entering data)
 - Reporting errors in surveys (you do not know the exact value) or administrative data (miss-reporting)
- 'Classical measurement error':
 - ▶ One of the most common and 'best' behaving problem but a problem.
 - lt needs to satisfy the followings:
 - ▶ It is zero on average (so it does not affect the average of the measured variable)
 - ► (Mean) independent from all variables.
- ► There are many other 'non-classical' measurement error, which cause problems in modelling.

Is measurement error in variables a problem?

It depends...

- ▶ Prediction: your are predicting *with* the errors not a particular problem, but need to be addressed when predicting or generalizing.
- Association:
 - ▶ Interested in the estimated coefficient value (not just the sign)

Solution?

- Often cannot do anything about it!
 - ▶ The problem is with data collection/how data is generated.
- ▶ If cannot do anything, what is the consequence of such errors:
 - ▶ Does measurement error make a difference in the model parameter estimates?

Two cases for classical Measurement Error

- Classical measurement error in the dependent (y or left-hand-side) variable
 - is not expected to affect the regression coefficients.
- ► Classical measurement error in the explanatory (x or right-hand-side) variable
 - will affect the regression coefficients.
- ▶ We are covering how to mathematically approach this problem.
 - ▶ Show general way of thinking about *any* type of measurement error.
 - ► There are lot of format for measurement errors, you may want to have an idea whether it affects your regression coefficient(s):
 - ► If yes we call it 'biased' parameter(s).

Classical measurement error in the dependent variable (y) - I.

It means:

$$y = y^* + e$$

Where, E[e] = 0 and e is mean independent from x and y ($E[e \mid x, y] = 0$). Reminder if e is mean independent from x, y, then Cov[e, x] = 0, Cov[e, y] = 0)

Compare the slope of model with an error-free dependent variable (y^*) to the slope of the same regression where y is measured with error (y).

$$y^* = \alpha^* + \beta^* x + u^*$$
$$y = \alpha + \beta x + u$$

Slope coefficients in the two regression are:

$$\beta^* = \frac{Cov[y^*, x]}{Var[x]}, \qquad \beta = \frac{Cov[y, x]}{Var[x]}$$

Classical measurement error in the dependent variable (y) - II.

Compering the two coefficients we show the two are equal because the measurement error is not correlated with any relevant variable(s), including x so that Cov[e, x] = 0

$$\beta = \frac{\operatorname{Cov}\left[y,x\right]}{\operatorname{Var}\left[x\right]} = \frac{\operatorname{Cov}\left[\left(y^* + e\right),x\right]}{\operatorname{Var}\left[x\right]} = \frac{\operatorname{Cov}\left[y^*,x\right] + \operatorname{Cov}\left[e,x\right]}{\operatorname{Var}\left[x\right]} = \frac{\operatorname{Cov}\left[y^*,x\right]}{\operatorname{Var}\left[x\right]} = \beta^*$$

- ► Classical measurement error in the dependent (LHS) variable makes the slope coefficient unchanged because the expected value of the error-ridden *y* is the same as the expected value of the error-free *y*.
- ► Consequence: classical measurement error in the dependent variable is not expected to affect the regression coefficients.
 - ▶ But it lowers R^2 by increasing the disturbance term $u = u^* + e$.

Classical measurement error in the explanatory variable (x) - I.

It means:

$$x = x^* + e$$

Where, E[e] = 0 and e is mean independent from y and x, thus Cov[e, y] = 0, Cov[e, x] = 0.

Again let us compare the slopes of the two models, where x^* is the error-free explanatory variable x is measured with error.

$$y = \alpha^* + \beta^* x^* + u^*$$
$$y = \alpha + \beta x + u$$

The slope coefficients for the two models are similar to the previous ones:

$$\beta^* = \frac{\textit{Cov}\left[y, x^*\right]}{\textit{Var}\left[x^*\right]}, \qquad \beta = \frac{\textit{Cov}\left[y, x\right]}{\textit{Var}\left[x\right]}$$

Classical measurement error in the explanatory variable (x) - II.

Let us relate β to β^* :

$$\beta = \frac{Cov [y, x]}{Var [x]} = \frac{Cov [y, (x^* + e)]}{Var [x^* + e]} = \frac{Cov [y, x^*] + Cov [y, e]}{Var [x^*] + Var [e]} = \frac{Cov [y, x^*]}{Var [x^*] + Var [e]}$$

$$= \frac{Cov [y, x^*]}{Var [x^*]} \frac{Var [x^*]}{Var [x^*] + Var [e]}$$

$$= \beta^* \frac{Var [x^*]}{Var [x^*] + Var [e]}$$

- $\triangleright \beta \neq \beta^*$, thus it is a 'bias'.
- We call it the 'attenuation bias', while the error inflates the variance in the explanatory (RHS) variable and makes β closer to zero.

Classical measurement error in the explanatory variable (x) - III.

- ▶ Slope coefficients are different in the presence of classical measurement error in the explanatory variable.
 - The slope coefficient in the regression with an error-ridden explanatory (x) variable is smaller in absolute value than the slope coefficient in the corresponding regression with an error-free explanatory variable.

$$\beta = \beta^* \frac{Var[x^*]}{Var[x^*] + Var[e]}$$

- ► The sign of the two slopes is the same
- But the magnitudes differ.
- ▶ Consequence: on average β^* is closer to zero than it should be.

Effect of a biased parameter

► Attenuation bias in the slope coefficient:

$$\beta = \beta^* \frac{Var[x^*]}{Var[x^*] + Var[e]}$$

- ▶ So β is smaller in absolute value than β^*
- ightharpoonup As a consequence α is also biased

$$\alpha = \bar{\mathbf{y}} - \beta \bar{\mathbf{x}}$$

- ▶ If one parameter is biased the other one usually biased too
 - ▶ The value of intercept changes in the opposite direction!
 - $\triangleright \beta$ is closer to zero, α is further away from α^*

Classical measurement error in the explanatory variable (x)

▶ Without measurement error.

$$\alpha^* = \bar{y} - \beta^* \overline{x^*}$$

▶ With measurement error,

$$\alpha = \bar{\mathbf{y}} - \beta \bar{\mathbf{x}}$$

 Classical measurement error leaves expected values (averages) unchanged so we can expect

$$\bar{x} = \overline{x^*}$$

Both regressions go through the same (\bar{x}, \bar{y}) point. Can derive that the difference in the two intercepts:

$$\alpha = \bar{y} - \beta \bar{x} = \alpha^* + \beta^* \overline{x^*} - \beta \bar{x} = \alpha^* + \beta^* \bar{x} - \beta \bar{x} = \alpha^* + (\beta^* - \beta) \bar{x}$$

$$= \alpha^* + \left(\beta^* - \beta^* \frac{Var[x^*]}{Var[x^*] + Var[e]}\right) \bar{x} = \alpha^* + \beta^* \bar{x} \frac{Var[e]}{Var[x^*] + Var[e]}$$

Review for classical measurement errors

- ► Classical measurement error in dependent variable
 - No bias, but nosier results.
- Classical measurement error in explanatory variable
 - Larger variation of x
 - Beta will be biased attenuation bias
 - closer to zero / smaller in absolute value
 - Consequence:
 - When we compare two observations that are different in x by one unit, the true difference in x^* is likely less than one unit. (Larger variation in x)
 - ▶ Therefore we should expect smaller difference in y associated with differences in x, than with differences in the true variable x^* . (Biased parameter)
 - You can interpret your result as a lower (higher) bound of the true parameter if your sign is positive (negative).
- ▶ Most often you only speculate about classic measurement error.
 - ► Looking at how is data collected
 - ▶ Infer from what you learn about the sampling process.

Consequences

- ► Most variables in economic and social data are measured with noise. So what is the practical consequence of knowing the potential bias?
- Estimate magnitude which affects regression estimates.
- Look for the source, think about it's nature and consider impact.
- Super relevant issue for data collection, data quality!
- ► Have a look at the case study on hotels in Chapter08!

Summary take-away

- ▶ Regression functional form selection can help better capture relationships
- Several real life data problems may lead to estimation problems.