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Motivation

I Interested in the pattern of association between life expectancy in a country and
how rich that country is.
I Uncovering that pattern is interesting for many reasons: discovery and learning from

data.
I Identify countries where people live longer than what we would expect based on

their income, or countries where people live shorter lives.
I Analyzing regression residuals.
I Getting a good approximation of the yE = f (x) function is important.
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Functional form

I Relationships between y and x are often complicated!
I When and why care about the shape of a regression?
I How can we capture function form better?

I This class is about transforming variables in a simple linear regression.
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Functional form - linear approximation

I Linear regression – linear approximation to a regression of unknown shape:

yE = f (x) ≈ α + βx

.
I Modify the regression to better characterize the nonlinear pattern if,

I we want to make a prediction or analyze residuals - better fit
I we want to go beyond the average pattern of association - good reason for

complicated patterns
I all we care about is the average pattern of association, but the linear regression gives

a bad approximation to that - linear approximation is bad
I Not care

I if all we care about is the average pattern of association,
I if linear regression is good approximation to the average pattern
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Functional form - types

There are many types of non-linearities!
I Linearity is one special cases of functional forms.
I We are covering the most commonly used transformations:

I Ln of natural log transformation
I Piecewise linear splines
I Polynomials - quadratic form
I Ratios
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Functional form: ln transformation

I Frequent nonlinear patterns better approximated with y or x transformed by taking
relative differences:

I In cross-sectional data usually there is no natural base for comparison.
I Taking the natural logarithm of a variable is often a good solution in such cases.
I When transformed by taking the natural logarithm, differences in variable values

we approximate relative differences.
I Log differences works because differences in natural logs approximate percentage

differences!
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Logarithmic transformation - interpretation

I ln(x) = the natural logarithm of x
I Sometimes we just say log x and mean ln(x). Could also mean log of base 10. Here

we use ln(x)

I x needs to be a positive number
I ln(0) or ln(negative number) do not exist

I Log transformation allows for comparison in relative terms – percentages!

Claim:
ln(x + ∆x)− ln(x) ≈ ∆x

x

I The difference between the natural log of two numbers is approximately the
relative difference between the two for small differences.
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Logarithmic transformation - derivation

I From calculus we know:
lim
x→x0

ln(x)− ln(x0)

x − x0
=

1
x0

I By definition it means a small change in x or ∆x = x − x0. Manipulating the
equation, we get:

lim
∆x→0

ln(x0 + ∆x)− ln(x0) = lim
∆x→0

∆x

x0

I If ∆x is not converging to 0, this is an approximation of percentage changes.

ln(x0 + ∆x)− ln(x0) ≈ ∆x

x0

I Numerical examples (x0 = 1):
I ∆x = 0.01 or 1% larger: ln(1+0.01) = ln(1.01) = 0.0099 ≈ 0.01
I ∆x = 0.1 or 10% larger: ln(1+0.1) = ln(1.1) = 0.095 ≈ 0.1
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Log approximation: what is considered small?

I Log differences are good approximations for small
relative differences!

I When ∆x is considered small?
I Rule of thumb: 0.3 (30% difference) or smaller

I But for larger x, there is a considerable difference,
I A log difference of +1.0 corresponds to a +170

percentage point difference
I A log difference of -1.0 corresponds to a -63%

percentage point difference

I In case of large differences you may have to
calculate percentage change by hand
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When to take logs?

I Comparison makes mores sense in relative terms
I Percentage differences

I Variable is positive value
I There are some tricks to deal with 0s and negative numbers, but these are not so

robust techniques.
I Most important examples:

I Prices
I Sales, turnover, GDP
I Population, employment
I Capital stock, inventories

I You may take the log for y or x or both!
I These yield different models!
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Interpreting parameters of regressions with log variables

ln(y)E = α + βxi - ‘log-level’ regression
I log y, level x
I α is average ln(y) when x is zero. (Often meaningless.)
I β: y is β ∗ 100 percent higher, on average for observations with one unit higher x.

yE = α + βln(xi ) - ‘level-log’ regression
I level y, log x
I α is : average y when ln(x) is zero (and thus x is one).
I β: y is β/100 units higher, on average, for observations with one percent higher x.

ln(y)E = α + βln(xi ) - ‘log-log’ regression
I log y, log x
I α: is average ln(y) when ln(x) is zero. (Often meaningless.)
I β: y is β percent higher on average for observations with one percent higher x.
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Interpreting parameters of regressions with log variables

I Precise interpretation is key
I The interpretation of the slope (and the intercept) coefficient(s) differs in each

case!

I Often verbal comparison is made about a 10% difference in x if using level-log or
log-log regression.
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Hotel price-distance regression and functional form

I pricei = 132.02−14.41∗distancei
I Issue ?
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Hotel price-distance regression and functional form - log-level

I ln(pricei ) = 4.84− 0.13 ∗ distancei
I Better approximation to the average

slope of the pattern.
I Distribution of log price is closer to

normal than the distribution of price
itself.

I Scatterplot is more symmetrically
distributed around the regression line
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Hotel price-distance regression and functional form - level-log

I pricei = 116.29− 28.30 ∗ ln(distancei )
I We now make comparisons in terms

percentage difference in distance
I This transformation focuses on the

lower and upper part of the domain
in x : smaller values have even
smaller log-values, while large values
become closer to the average value.
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Hotel price-distance regression and functional form - log-log

I ln(pricei ) =
4.70− 0.25 ∗ ln(distancei )

I Comparisons relative terms for
both price and distance
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Comparing different models

Table: Hotel price and distance regressions

(1) (2) (3) (4)
Variables price ln(price) price ln(price)

Distance to city center, miles -14.41 -0.13
ln(distance to city center) -24.77 -0.22
Constant 132.02 4.84 112.42 4.66

Observations 207 207 207 207
R-squared 0.157 0.205 0.280 0.334

Source: hotels-vienna dataset. Prices in US dollars, distance in miles.
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Hotel price-distance regression interpretations

I price-distance: hotels that are 1 mile farther away from the city center are 14 US
dollars less expensive, on average.

I ln(price) - distance: hotels that are 1 mile farther away from the city center are 13
percent less expensive, on average.

I price - ln(distance): hotels that are 10 percent farther away from the city center
are 2.477 US dollars less expensive, on average.

I ln(price) - ln(distance): hotels that are 10 percent farther away from the city
center are 2.2 percent less expensive, on average.
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To Take log or Not to Take log - substantive reason

Decide for substantive reason:
I Take logs if variable is likely affected in multiplicative ways
I Don’t take logs if variable is likely affected in additive ways

Decide for statistical reason:
I Linear regression is better at approximating average differences if distribution of

dependent variable is closer to normal.
I Take logs if skewed distribution with long right tail

I Most often the substantive and statistical arguments are aligned
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Comparing different models - model choice

Table: Hotel price and distance regressions

(1) (2) (3) (4)
Variables price ln(price) price ln(price)

Distance to city center, miles -14.41 -0.13
ln(distance to city center) -24.77 -0.22
Constant 132.02 4.84 112.42 4.66

Observations 207 207 207 207
R-squared 0.157 0.205 0.280 0.334

Source: hotels-vienna dataset. Prices in US dollars, distance in miles.
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Model choice - substantive reasoning

I It depends on the goal of the analysis!
I Prices

I We are after a good deal on a single night – absolute price differences are meaningful.
I Percentage differences in price may remain valid if inflation and seasonal fluctuations

affect prices proportionately.
I Or we are after relative differences - we do not mind about the magnitude that we

are paying, we only need the best deal.
I Distance

I Distance makes more sense in miles than in relative terms – given our purpose is to
find a relatively cheap hotel.
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Model choice - statistical reasoning

I Visual inspection
I Log price models capture patterns better, this could be preferred.

I Compare fit measure (R2)
I Level-level and level-log regression: R-squared of the level-log regression is higher,

suggesting a better fit.
I Log-level and log-log regression: R-squared of the log-log regression is higher,

suggesting a better fit.

I Should not compare R-squared of two regressions with different dependent
variables – compares fit in different units!

I Final verdict:
I log-log probably the best choice:

I can interpret in a meaningful way and
I gives good prediction as this is the goal!
I Note: prediction with log dependent variable is tricky.
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Piecewise Linear Splines

I A regression with a piecewise linear spline of the explanatory variable.
I Results in connected line segments for the mean dependent variable.
I Each line segment corresponding to a specific interval of the explanatory variable.

I The points of connection are called knots,
I the line may be broken at each knot so that the different line segments may have

different slopes.
I A piecewise linear spline with m line segments is broken by m − 1 knots.

I The places of the knots (the boundaries of the intervals of the explanatory
variable) need to be specified by the analyst.
I R has built-in routines calculate the rest.
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Piecewise Linear Splines - formula

I A piecewise linear spline regression results in connected line segments, each line
segment corresponding to a specific interval of x .

I The formula for a piecewise linear spline regression with m line segments (and
m − 1 knots in-between) is:

yE =α1 + (β1x)1x<k1 + (α2 + β2x)1k1≤x<k2+

. . .+ (αm−1 + βm−1x)1km−2≤x<km−1 + (αm + βmx)1x≥km−1
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Piecewise Linear Splines - interpretaton

yE =α1 + (β1x)1x<k1 + . . .+ (αj + βjx)1kj−1≤x<kj . . .+ (αm + βmx)1x≥km−1

j =2, . . . ,m − 1

Interpretation of the most important parameters:
I α1 : average y when x is zero, if k1 > 0 (Otherwise: α1 + αj , where

kj−1 ≤ 0 < kj)
I β1 : When comparing observations with x values less than k1, y is β1 units higher,

on average, for observations with one unit higher x value.
I βj : When comparing observations with x values between kj−1 and kj , y is βj units

higher, on average, for observations with one unit higher x value.
I βm : When comparing observations with x values greater than km−1, y is βm units

higher, on average, for observations with one unit higher x value.
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Simulation for piecewise linear splines

I Piecewise linear spline
I Knots at 20, 40
I α = 10
I β1 = 0.2
I β2 = 0.7
I β3 = 0.0
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Overview of piecewise linear spline

I A regression with a piecewise linear spline of the explanatory variable
I Handles any kind of nonlinearity

I Including non-monotonic associations of any kind
I Offers complete flexibility
I But requires decisions from the analyst

I How many knots?
I Where to locate them
I Decision based on scatterplot, theory / business knowledge
I Often several trials.

I You can make it more complicated:
I Quadratic, cubic or B-splines → rather a non-parametric approximation:

interpretation-fit trade-off
I Example: term-structure modelling (y: zero-coupon interest rate, x: maturity time)

cubic spline is used. Link
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Polynomials

I Quadratic function of the explanatory variable
I Allow for a smooth change in the slope
I Without any further decision from the analyst

I Technically: quadratic function is not a linear function (a parabola, not a line)
I Handles only nonlinearity, which can be captured by a parabola.
I Less flexible than a piecewise linear spline, but easier interpretation!

yE = α + β1x + β2x
2

I Can have higher order polynomials, in practice you may use cubic specification:
yE = α + β1x + β2x

2 + β3x
3

I General case
yE = α + β1x + β2x

2 + . . . βnx
n
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Quadratic form - interpretation I.

yE = α + β1x + β2x
2

I α is average y when x = 0,
I β1 has no interpretation in itself,
I β2 shows whether the parabola is

I U-shaped or convex (if β2 > 0)
I inverted U-shaped or concave (if β2 < 0).

08. Complicated patterns and messy data 30 / 49 Gábor Békés



Intro Fnc form log transf. Case: Hotels 1 Take log? Case: Hotels 2 Splines, polynomials Selection Messy data Measurement error Summary

Quadratic form - interpretation II.

yE = α + β1x + β2x
2

I Difference in y , when x is different. This leads to (partial) derivative of yE w.r.t.
x ,

∂yE

∂x
= β1 + 2β2x

I the slope is different for different values of x
I Compare two observations, j and k , that are different in x , by one unit: xk = xj + 1.

I Units which are one unit larger than xj are higher by β1 + 2β2xj in y on average.
I Usually we compare to the average of x : xj = x̄ .

I Units which are one unit larger than the average of x are higher by γ = β1 + 2β2x̄ in
y on average.

I Why, higher order polynomial is rather non-parametric method?
08. Complicated patterns and messy data 31 / 49 Gábor Békés



Intro Fnc form log transf. Case: Hotels 1 Take log? Case: Hotels 2 Splines, polynomials Selection Messy data Measurement error Summary

Which functional form to choose? - guidelines

Start with deciding whether you care about nonlinear patterns.
I Linear approximation OK if focus is on an average association.
I Transform variables for a better interpretation of the results (e.g. log), and it often

makes linear regression better approximate the average association.
I Accommodate a nonlinear pattern if our focus is

I on prediction,
I analysis of residuals,
I about how an association varies beyond its average.
I Keep in mind - simpler the better!
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Which functional form to choose? - practice

To uncover and include a potentially nonlinear pattern in the regression analysis:
1. Check the distribution of your main variables (y and x)
2. Uncover the most important features of the pattern of association by examining a

scatterplot or a graph produced by a nonparametric regression such as lowess or
bin scatter.

3. Think and check what would be the best transformation!
3.1 Choose one or more ways to incorporate those features into a linear regression

(transformed variables, piecewise linear spline, quadratic, etc.).
3.2 Remember for some variables log transformation or using ratios is not meaningful!

4. Compare the results across various regression approaches that appear to be good
choices. –> robustness check.
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Data Is Messy

I Clean and neat data exist only in dreams and in some textbooks...
I Data may be messy in many ways!
I Structure, storage type differs from what we want

There are potential issues with the variable(s) itself:
I Some observations are influential

I How to handle them? Drop them? Probably not but depends on the context.
I Variables measured with (systematic) error

I When does it lead to biased estimates?
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Extreme values vs influential observations

I Extreme values concept:
I Observations with extreme values for some variable

I Extreme values examples:
I Influential observations

I Their inclusion or exclusion influences the regression line
I Influential observations are extreme values
I But not all extreme values are influential observations!

I Influential observations example
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Extreme values and influential observations

I What to do with them?
I Depends on why they are extreme

I If by mistake: may want to drop them
I If by nature: don’t want to drop them
I Grey zone: patterns work differently for them for substantive reasons

I General rule: avoid dropping observations based on value of y variable
I Dropping extreme observations by x variable may be OK

I May want to drop observations with extreme x if such values are atypical for
question analyzed.

I But often extreme x values are the most valuable as they represent informative and
large variation.
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Classical Measurement Error

I You want to measure a variable which is not so easy to measure:
I Quality of the hotels
I Inflation
I Other latent variables with proxy measures

I Usually these miss-measurement are present due to
I Recording errors (mistakes in entering data)
I Reporting errors in surveys (you do not know the exact value) or administrative data

(miss-reporting)
I ‘Classical measurement error’:

I One of the most common and ‘best’ behaving problem – but a problem.
I It needs to satisfy the followings:

I It is zero on average (so it does not affect the average of the measured variable)
I (Mean) independent from all variables.

I There are many other ‘non-classical’ measurement error, which cause problems in
modelling.
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Is measurement error in variables a problem?

It depends...
I Prediction: your are predicting with the errors - not a particular problem, but need

to be addressed when predicting or generalizing.
I Association:

I Interested in the estimated coefficient value (not just the sign)

Solution?
I Often cannot do anything about it!

I The problem is with data collection/how data is generated.
I If cannot do anything, what is the consequence of such errors:

I Does measurement error make a difference in the model parameter estimates?
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Two cases for classical Measurement Error

I Classical measurement error in the dependent (y or left-hand-side) variable
I is not expected to affect the regression coefficients.

I Classical measurement error in the explanatory (x or right-hand-side) variable
I will affect the regression coefficients.

I We are covering how to mathematically approach this problem.
I Show general way of thinking about any type of measurement error.
I There are lot of format for measurement errors, you may want to have an idea

whether it affects your regression coefficient(s):
I If yes we call it ‘biased’ parameter(s).
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Classical measurement error in the dependent variable (y) - I.

It means:
y = y∗ + e

Where, E [e] = 0 and e is mean independent from x and y (E [e | x , y ] = 0).
Reminder if e is mean independent from x , y , then Cov [e, x ] = 0,Cov [e, y ] = 0)

Compare the slope of model with an error-free dependent variable (y∗) to the slope of
the same regression where y is measured with error (y).

y∗ = α∗ + β∗x + u∗

y = α + βx + u

Slope coefficients in the two regression are:

β∗ =
Cov [y∗, x ]

Var [x ]
, β =

Cov [y , x ]

Var [x ]
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Classical measurement error in the dependent variable (y) - II.

Compering the two coefficients we show the two are equal because the measurement
error is not correlated with any relevant variable(s), including x so that Cov [e, x ] = 0

β =
Cov [y , x ]

Var [x ]
=

Cov [(y∗ + e) , x ]

Var [x ]
=

Cov [y∗, x ] + Cov [e, x ]

Var [x ]
=

Cov [y∗, x ]

Var [x ]
= β∗

I Classical measurement error in the dependent (LHS) variable makes the slope
coefficient unchanged because the expected value of the error-ridden y is the same
as the expected value of the error-free y .

I Consequence: classical measurement error in the dependent variable is not
expected to affect the regression coefficients.
I But it lowers R2 by increasing the disturbance term u = u∗ + e.
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Classical measurement error in the explanatory variable (x) - I.

It means:
x = x∗ + e

Where, E [e] = 0 and e is mean independent from y and x , thus Cov [e, y ] = 0,Cov [e, x ] =
0.

Again let us compare the slopes of the two models, where x∗ is the error-free explanatory
variable x is measured with error.

y = α∗ + β∗x∗ + u∗

y = α + βx + u

The slope coefficients for the two models are similar to the previous ones:

β∗ =
Cov [y , x∗]

Var [x∗]
, β =

Cov [y , x ]

Var [x ]
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Classical measurement error in the explanatory variable (x) - II.

Let us relate β to β∗:

β =
Cov [y , x ]

Var [x ]
=

Cov [y , (x∗ + e)]

Var [x∗ + e]
=

Cov [y , x∗] + Cov [y , e]

Var [x∗] + Var [e]
=

Cov [y , x∗]

Var [x∗] + Var [e]

=
Cov [y , x∗]

Var [x∗]

Var [x∗]

Var [x∗] + Var [e]

= β∗
Var [x∗]

Var [x∗] + Var [e]

I β 6= β∗, thus it is a ‘bias’.
I We call it the ‘attenuation bias’, while the error inflates the variance in the

explanatory (RHS) variable and makes β closer to zero.
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Classical measurement error in the explanatory variable (x) - III.

I Slope coefficients are different in the presence of classical measurement error in the
explanatory variable.
I The slope coefficient in the regression with an error-ridden explanatory (x) variable

is smaller in absolute value than the slope coefficient in the corresponding regression
with an error-free explanatory variable.

β = β∗ Var [x∗]

Var [x∗] + Var [e]

I The sign of the two slopes is the same
I But the magnitudes differ.

I Consequence: on average β∗ is closer to zero than it should be.
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Effect of a biased parameter

I Attenuation bias in the slope coefficient:

β = β∗
Var [x∗]

Var [x∗] + Var [e]

I So β is smaller in absolute value than β∗

I As a consequence α is also biased

α = ȳ − βx̄

I If one parameter is biased the other one usually biased too
I The value of intercept changes in the opposite direction!
I β is closer to zero, α is further away from α∗
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Classical measurement error in the explanatory variable (x)

I Without measurement error,
α∗ = ȳ − β∗x∗

I With measurement error,
α = ȳ − βx̄

I Classical measurement error leaves expected values (averages) unchanged so we
can expect

x̄ = x∗

Both regressions go through the same (x̄ , ȳ) point. Can derive that the difference
in the two intercepts:

α = ȳ − βx̄ = α∗ + β∗x∗ − βx̄ = α∗ + β∗x̄ − βx̄ = α∗ + (β∗ − β) x̄

= α∗ +

(
β∗ − β∗ Var [x∗]

Var [x∗] + Var [e]

)
x̄ = α∗ + β∗x̄

Var [e]

Var [x∗] + Var [e]

08. Complicated patterns and messy data 46 / 49 Gábor Békés



Intro Fnc form log transf. Case: Hotels 1 Take log? Case: Hotels 2 Splines, polynomials Selection Messy data Measurement error Summary

Review for classical measurement errors

I Classical measurement error in dependent variable
I No bias, but nosier results.

I Classical measurement error in explanatory variable
I Larger variation of x
I Beta will be biased - attenuation bias

I closer to zero / smaller in absolute value
I Consequence:

I When we compare two observations that are different in x by one unit, the true
difference in x∗ is likely less than one unit. (Larger variation in x)

I Therefore we should expect smaller difference in y associated with differences in x ,
than with differences in the true variable x∗. (Biased parameter)

I You can interpret your result as a lower (higher) bound of the true parameter if your
sign is positive (negative).

I Most often you only speculate about classic measurement error.
I Looking at how is data collected
I Infer from what you learn about the sampling process.
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Consequences

I Most variables in economic and social data are measured with noise. So what is
the practical consequence of knowing the potential bias?

I Estimate magnitude which affects regression estimates.
I Look for the source, think about it’s nature and consider impact.
I Super relevant issue for data collection, data quality!

I Have a look at the case study on hotels in Chapter08!
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Summary take-away

I Regression – functional form selection can help better capture relationships
I Several real life data problems may lead to estimation problems.
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