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Motivation
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Motivation

Heating and cooling are important uses of electricity. How does weather conditions
affect electricity consumption? We are going to use monthly data on temperature and
residential electricity consumption in Arizona. How to formulate a model which captures
these factors?
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Time series specialties

> \We have time series data if we observe one unit across many time periods.

» There is a special notation:
Yt, t = 1,2,...,7-

» Time series data presents additional opportunities as well as additional challenges
to compare variables.
> Key issues:
» Data wrangling: frequency and aggregation
» Special nature of time series: stationarity or non-stationarity (random walk, trends,

seasonality), SEs and serial correlation
» Interpretation.

12. Time series regression Gabor Békés



Data wrangling
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Data preparation

> Frequency of time series = time elapsed between two observations of a variable
» Practical problems with frequency:

» There may be regular/irregular gaps between them: e.g. weekends for
stock-exchange
» Two variables have different frequencies

» Extreme values (spikes) in your variable
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Aggregation

> Regressions: to condition y; on values of x; the two variables need to be on the
same frequency. When the frequency of y and x is different we need to adjust one
of them.

> Aggregation:
»  Flow variables: sum up the values within the interval. e.g. daily sales — weakly
sales is the sum of daily sales.
» Stock variables: take the end-period value. e.g. daily stock prices uses the closing
price on a given day
» Other kinds of variables: usually take the average value

Gabor Békés
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What is special in time series

» Many aspects of regression analysis remains, but time series regressions is special
for several reasons.
» Time series regression uncover patterns rather than evidence of causality.
» Coefficient interpretation is based on conditional comparison
» Ordering matters — key difference to cross section
» Trend - variables for later time periods will tend to be higher or lower than in the
beginning.
» Seasonality - cyclical component

» Time series values are generally not independent from each other!
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Stationarity

» Stationarity: a property of the time series itself. Key new concept.

» Stationary time series have the same conditional distribution (and same
conditional expected value), at all times.

F(yt|:) = F(Yt+r|-) — E[yt|'] = E [yt++|'] = ¢, Vtand forany 7 € N

» Stationarity means stability of the time series sampling distribution (usually we are
interested in the expectation).

» Non-stationary time series are those that are not stable for some reason. Any of
the equality does not hold.

12. Time series regression Gabor Békés



TS prop
00®00000000

Serial correlation - order and sign

> Serial correlation means correlation of a variable with its previous values.

» The 1st order serial correlation coefficient is defined as

p1 = Corrly, ye—1]

» the 2nd order serial correlation coefficient is defined as p» = Corr|y:, yr—»], ect.
» For a positively serially correlated variable, if its value was above average last time,
it is more likely that it is above average this time, too.
» Special case: p; = 0 - no serial correlation, called “White Noise".
» Meaning: like in cross-section, order does not matter.
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Serial correlation - magnitude

Value of the simulated variable

Generated time series: y; = pyr—1 + € with pg 0.8 (left) and p1 = 0 (right).
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Non-stationarity - Random Walk

» Example of non-stationary time series is the random walk.
» Random walk when p; = 1 — also called a ‘unit root’.

» Time series variables that follow random walk change in completely random ways.

Yt =Yi-1+ €, Ayr =y — Y1 =€

» Whatever the previous change was the next one may be anything. Wherever it
starts, a random walk variable may end up anywhere after a long time.

» Random walks are impossible to predict

> After a change, they don't revert back to some value or trend line but continue their
journey from that point.

» Spread rising from one interval to another
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Random walk
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Unit root test

» Testing is complicated. (e.g. Dickey-Fuller sampling distribution)
» Phillips-Perron test is based on the following idea:

Ye=a+ pyr—1+ €

» This model represents a random walk if p = 1 (with ‘drift’ if o # 0)

» The Phillips-Perron test has hypothesis Hy : p = 1 against the alternative
Ha:p <l

> Statistical software calculate the p-value for this test.

» When the p-value is large (e.g., larger than 0.05), we don't reject the null,
concluding that the time series variable follows a random walk (perhaps with drift).
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Non-stationarity - (stochastic) Trend(s)
Change in variable (or the ‘fist difference’): Ay: = yr — yt—1
Positive trend: E[Ay:] >0

Negative trend: E[Ay;] <0

> A time series variable follows a positive trend if its change is positive on average.
It follows a negative trend if its change is negative on average

Linear trend: E[Ax;| = constant

Exponential trend: E[Aln(x:)] = constant

» Trend is linear if the change is the same on average and it is exponential if the
change in the log of the variable is the same on average.
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Non-stationarity - Seasonality

» There is seasonal variation, or simply seasonality, in a time series variable if its
expected value changes periodically.

» Follows the seasons of the year, days of the week, hours of the day.

P Seasonality may be linear, when the seasonal differences are constant; it may be
exponential, if relative differences (that may be approximated by log differences)
are constant.

» Important real life phenomenon - many economic activities follow seasonal
variation over the year, through the week or day.

» Some variables are ‘seasonally adjusted” which means this seasonal component is
removed.

» You may use year-in-year differences as your variable, but this is cumbersome to
interpret.
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Properties of time series - summary

> Stationary series are those where the expected value does not change, variance
does not change over time: two observations at different points in time have the
same mean and variance.

> A series is ‘stationary’ if all time intervals are similar in this sense.
» We have seen three examples of non-stationarity:

» Random walk and similar series — Variance keeps increasing over time, but there is
no trend.

» Trend - Expected value is different in later time periods than in earlier time periods

» Seasonality - Expected value is different in periodically recurring time periods

> We care about this because regression with time series data variables that are not
stationary are likely to give misleading results.
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Practical implications

» Check if your variable is stationary
> Visualize
» Check serial correlation(s) (may use auto-correlation plot)
» Do a unit-root test
» If there is a good reason to believe your variable trending (or RW)
» Take differences Ay;
» Take percentage changes or log differences
» In extremely rare cases you need to difference your variable twice, if your variable
still has a unit root.
» If your variable has a seasonality

» Use seasonality dummies in your regression
» May consider to work with seasonal changes.
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Microsoft and S&P 500 stock prices - data

» Daily price of Microsoft stock and value of S&P 500 stock market index

» The data covers 21 years starting with December 31 1997 and ending with
December 31 2018.

» Many decisions to make...
» Look at data first
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Microsoft and S&P 500 stock prices - ts plot
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Microsoft and S&P 500 stock prices - decisions

» Frequency decisions:
» Price: closing price
> Gaps will be overlooked (neglect weekend)
» Friday-Monday gap ignored (no special dummy)
» Holidays: Christmas, 4 of July (when would be a weekday), ect. are ignored as well

» All values kept, extreme values part of process.
» Outcome: it is obviously non-stationary (Phillips-Perron test: very high p-value)

» monthly returns - Monthly frequency: closing price for the last day of a month

» Returns: percent change of the closing prices: 100%“}#. (Alternative measure:
first difference of log prices.)
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Microsoft and S&P 500 - index returns (pct)
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Microsoft and S&P 500 index returns - comparisons
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Returns on a company stock and market returns

» Correlation in time series: the price of the Microsoft stock tends to increase when
market prices increase, and it tends to decrease when market prices decrease.
» Market changes are smaller

> If focus on two years, we can see it better

» You can estimate the regression formally as well.
» Read the book to get the argument about the co-movement of the returns.
» Good for descriptive purposes, less for prediction.
» Also note: it is still non-stationary because of changing variance...
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Returns on a company stock and market returns
pctchange(MSFT;) = «a + Spctchange(SP500;) (1)

» a=0.54;,5=1.26
» Intercept: returns on the Microsoft stock tend to be 0.54 percent when the
S%P500 index doesn’t change.

v

Slope: returns on the Microsoft stock tend to be 1.26% higher when the returns
on the S&P500 index are 1% higher.
The 95% confidence interval is [1.06, 1.46].

R-squared: 0.36

vV vV

First difference of log prices. Estimate is 1.24
» Daily returns (percent), beta is 1.10
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Time series regressions

> Regression in time series data is defined and estimated the same way as in other
data.

yf = Bo + Pix1t + Baxor + ...

> Interpretations similar to cross-section
» Bg: We expect y to be By when all explanatory variables are zero.
» 31: Comparing time periods with different x; but the same in terms of all other
explanatory variables, we expect y to be higher by 5; when x; is higher by one unit.
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Issues to deal with

» Handling trend(s) and random walk (RW)
» Transforming the series, such as taking first differences
» Handling seasonality and extreme values
» Include dummies
» Standard errors for parameters
» Dealing with serial correlation

» Considering lags and cummulative effects (in x;)
» May fix standard error problems if include lags of y;
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Trend & RW - Spurious regression

» Trends, seasonality, and random walks can present serious threats to uncovering
meaningful patterns in time series data.
> Example: time series regression in levels y£ = a + Sx,.
» If both y and x have a positive trend, the slope coefficient 3 will be positive whether

the two variables are related or not.
» That is simply because in later time periods both tend to have higher values than in

earlier time periods.

> Associations between variables only because of the effect of trends are said to be
spurious correlation.
» trend and seasonality are confounders (omitted variables)
» trend: global tendencies e.g. population growth, economic activity, fashion,
technology, ect.
» seasonality: e.g. weather, holidays, leisure time, sleeping and eating habits,
open/close time of shops, ect.

Gabor Békés
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Trend & RW - solution: first differences

We use the A notation to denote a first difference:

Ayt =yt — yr1 (2)
A linear regression in differences for both y and x is the following

AyE = a+ BAx;

> Coefficients same interpretation as before, but use "when" and "change”

» Because variables denote changes...
» « is the average change in y when x doesn't change.
» The slope coefficient on Ax; shows how much more y is expected to change when x
changes by one more unit.
> "more" — needed as we expect y to change anyway by «, when x doesn’t change.
» The slope shows how y is expected to change when x changes, in addition to a.
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Trend & RW - side note

> |t is not necessary that you take difference for both y and x variables.
» Substantive: which transformation makes more sense for interpretation.
> Statistical: avoid trends/unit roots in your variables. (stronger reason!)

» For most applications, time series regression involving using differences or log

differences.

» Deterministic trend: if you think there is a simple deterministic trend behind both
variables you may consider to use levels and a simple time-trend variable:
¥+ = a+ Bx; + 6t. However, this is rarely the case.
» Matters for prediction. See Chapter 18

Gabor Békés
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Seasonality in time series regressions

» Capturing seasonality also crucial.

» Higher the frequency — the more important.
» Have seasonal dummies if seasonality is stable.

yt:O‘+5Xt+5Jan+5Feb+"'+6Nov

» Pattern may vary over time. If it does, solutions must capture exact pattern —
difficult, not covering here.
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Standard errors in time series regressions

» Serial correlation (Corr[y:, y+—1] # 0), makes the usual standard error estimates
wrong.
» When the dependent variable is serially correlated - classical heteroskedasticity
robust SE is wrong - sometimes very wrong leading to false generalization.
» More precisely it is serial correlation in residuals, but think about is as serial
correlation in y; is okay

» Use new SE - the Newey-West SE
» procedure incorporates the structure of serial correlation of the regression residuals

» Fine if heteroskedasticity as well
> Need to specify lags. If enough data, frequency and seasonality should help, Months

- 12 lags should be good.
» An alternative solution is to have lagged dependent variable in the regression

Ve = a+ Bxe +v1ye-1+ YV2yr—2...

Gabor Békés
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Electricity consumption and temperature

» Monthly weather and electricity data for Phoenix, Arizona
January 2001 and ends in Dec 2017. Overall 204 month

» The weather data includes “cooling degree days" and “heating degree days" per
month.

v

» Cooling degree days and heating degree days are daily temperatures transformed in
a simple way and then added up within a month.
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Electricity consumption and temperature - details

» The cooling degree days measure takes the average temperature within each day,
subtracts a reference temperature (65F, or 18C), and adds up these daily values.

> If the average temperature in a day is, say, 75F (24C), the cooling degree is 10F
(6C). This would be the value for one day.

» Then we would calculate the corresponding values for each of the days in the
month and add them up.

» Days when the average temperature is below 65F have zero values.
» For heating degree days it's the opposite: zero for days with 65F or warmer, and

the difference between the daily average temperature and 65F when lower.
> For example, with 45F (7C), the heating degree is 20F (11C).
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(Log) Electricity consumption
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Average cooling/heating degrees
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Wrangling and modelling decisions

» There is an exponential trend in electricity —> use log difference

» For easier interpretation, take first difference (FD) of cooling days and heating
days as well.

» Natural question: How much does electricity consumption change when temperature
changes?

» In this example, taking first difference does not make a huge difference, would not

be a (big) mistake to keep in levels
» Another option could be to take 12-month difference

» Add monthly dummies, January (December to January) is reference

» Use Newey-West standard errors in parentheses; ** p < 0.01, * p < 0.05
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Model estimates

o0

VARIABLES AlInQ AlIn@
ACD 0.031**  0.017**
(0.001)  (0.002)

AHD 0.037**  0.014**
(0.003)  (0.003)
month = 2, February -0.274**
month = 3, March -0.122%**
month = 7, July 0.058**
month = 8, August -0.085**
month = 9, September -0.176**
month = 12, December 0.067**
Constant 0.001 0.092**

(0.002)  (0.013)
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Model results

» Simple (1) model:
» In months when cooling degrees increase by one degree and heating degrees do not
change, electricity consumption increases by 3.1 percent, on average.
» When heating degrees increase by one degree and cooling degrees do not change,
electricity consumption increases by 3.7 percent, on average.

» Model (2) with monthly dummies.

» The reference month is January: constant (when cooling and heating degrees stay
the same), electricity consumption increases by about 9% from December to January.
» The other season coefficients compare to this change:
» February: the January to February change is 28 percentage points lower than in the
reference month, December to January.
» That was +9%, so electricity consumption decreases by about 19% on average to
February from January when cooling and heating degrees stay the same.
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Propagation effect: changes and lags

> Potential causal scenario where changes take an impact in several periods later:
AytE = a+ BolAxt + f1Axt—1 + B2Axt 2

> Coefficients — how y is expected to change after a one-time change in x, i.e., when
x changes in one time period but not afterwards.

» [y shows the contemporaneous association: what to expect in the same time
period.

» 31 shows the once-lagged association: what to expect in the next time period.
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Interpretation of lags and cumulative effect

Ayf = a+ BoDxe + P1lxe—1 + Bolxe—2

» o = how many units more y is expected to change within the same time period
when x changes by one more unit (and it didn't change in the previous two time
periods).

» (7 = how much more y is expected to change in the next time period after x
changed by one more unit — provided that it didn't change at other times.

» Cumulative effect:

ﬁcumul = BO + ﬁl + 52
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Testing the cumulative effect

> To get a SE on the cumulative effect, do a trick and transformation, and estimate
a different model

Ayf = o+ BeumulDxe—_> + (50A(AXt) + 61A(Axt—1)

» the Beumus in this regression is exactly the same as Sy + 31 + 32 in the previous
regression.

» Other two right-hand-side variables strange and we do not care, but needed.

» Typically estimate both. One with lags to see patterns. One with cumulative
second to test the cumulative value.

» Often need a few, not many lags
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Electricity consumption and temperature - use lags

» Go back to model
» Add 2 lags - for both cooling and heating days
» And keep monthly dummies
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Model summary with lags

) @)
VARIABLES AlnQ VARIABLES AlnQ
ACD 0.020** | ACD cumulative coeff  0.027**
(0.002) (0.005)
ACD 1st lag 0.006**
(0.002)
ACD 2nd lag 0.001
(0.002)
AHD 0.019** | AHD cumulative coeff  0.030**
(0.003) (0.007)
AHD 1st lag 0.011%*
(0.003)
AHD 2nd lag 0.000
(0.003)
Observations 201 201
R-squared 0.957 0.957
Month binary variables Yes Yes

Standard errors in parentheses
** p<0.01, * p<0.05
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Thinking about the results

» Cumulative effect is the same as the sum of the lags.
> Interestingly evidence of lagged effect: there is propagation effect.
» Not straightforward to answer why we see this pattern.

» People take time to react to weather change
» Or captures some correlated other variable

» Overall: Temperature is strongly associated with residential electricity consumption
in Arizona, even when seasonality is captured
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Findings

» How would you summarize our findings?
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Summary of the process

Decide on frequency; deal with gaps if necessary.

Plot the series. Identify features and issues.

Handle trends by transforming variables (Often: first difference).

Specify regression that handles seasonality, usually by including season dummies.
Include or don't include lags of the right-hand-side variable(s).

Handle serial correlation.

vVVvvyVvVYVvyyypy

Interpret coefficients in a way that pays attention to potential trend and
seasonality.

» Time series econometrics very complicated beyond this.

» But: These steps often good enough.
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