15. Introduction to Machine Learning

Gábor Békés

Data Analysis 3: Prediction

Slideshow for the Békés-Kézdi Data Analysis textbook

- ► Cambridge University Press, 2021
- gabors-data-analysis.com
 - Download all data and code: gabors-data-analysis.com/dataand-code/
- ► This slideshow is for Chapter 15

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 000000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Regression, LASSO, machine learning

Regression

Intro

•000

- Analyst defines variables via feature engineering, including functional form selection (polynomials, splines, interactions)
- ► Analyst defines a set of possible models
- ► Analyst selects best model trying out various options (Best model selected by cross-validated RMSE)

Regression, LASSO, machine learning

Regression

Intro

- Analyst defines variables via feature engineering, including functional form selection (polynomials, splines, interactions)
- Analyst defines a set of possible models
- Analyst selects best model trying out various options (Best model selected by cross-validated RMSE)
- Regression with LASSO
 - Analyst defines variables via feature engineering, including functional form selection (polynomials, splines, interactions)
 - Analyst defines broadest model
 - ► Algorithm selects best model

Regression, LASSO, machine learning

Regression

- Analyst defines variables via feature engineering, including functional form selection (polynomials, splines, interactions)
- Analyst defines a set of possible models
 - Analyst selects best model trying out various options (Best model selected by cross-validated RMSE)
- Regression with LASSO
 - Analyst defines variables via feature engineering, including functional form selection (polynomials, splines, interactions)
 - Analyst defines broadest model
 - Algorithm selects best model
- Machine learning (Random Forest)
 - ▶ Analyst defines set of variables. No functional form selection.
 - ► Algorithm defines a variety of possible models.
 - ► Algorithm selects best model (Best model selected by cross-validated RMSE)

How does ML work?

Intro

- Regression finds a single solution.
 - You run an OLS regression and it yields one single output (estimated coefficients), calculated by formulae.
 - ► LASSO a numerical algorithm finds coefficients and the tuning parameter.
- ► Machine learning is different
 - ► No single best solution by formulae
 - ► Search through a set of possible prediction models
 - ► That best captures the relationship.
- ► In terms of prediction
 - ▶ Both estimate the model on the training set
 - And we avoid overfitting on the test set (and hope for external validity).

Typical ML prediction procedure

Intro

- ▶ We start with the data at hand.
- First, cut off the hold-out set.
- ► For what remains, we create k-times a training and test datasets, building the model on train set, and evaluating it on the test sets.
- ▶ We take the average of test set loss functions (e.g. MSE) and select the model with the best fit.
- ► Then, we take that very model, re-estimate it on our dataset save the holdout sample to get parameter estimates.
- ► Finally we evaluate it on the hold-out sample to estimate the fit we can expect on the live data.

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 000000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Roadmap

Intro

- ► Growing one tree [lecture 3]
 - ► The idea of regression trees (or CART)
 - Understand ML basics finding an optimal relationship by trying
 - ► How to develop (grow) a tree
- ► How to make it less prone to overfitting [lecture 4]
 - ► Go back to random sampling, and bootstrap
 - ► Random forest (or RF)
 - Boosting: GBM

Machine learning: Regression Trees with CART

- ▶ Regression Tree: Basic idea is that relationships are modelled as a series of binary decisions (splits)
- ► Classification and Regression Trees (CART) is a regression tree algorithm
- Introduce cart with the case study

 CART
 Single x
 CS.A1
 Multiple x
 Process Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 0 ● 000
 0000000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t

Case Study: CART for used cars price prediction

Case study: used-cars

- ► The used-cars data includes data on offers of used Toyota Camry cars advertised in the Chicago and Los Angeles areas, in 2018.
- ► The dataset has N=477 observations.
- Small dataset + simplicity: Single training-test split instead of k-fold cross-validation. Our training set is a random 70 percent of the original data (N = 333).

Case Study: CART for used cars price prediction

- Relationships between y and an x are modeled as a series of binary decisions (splits)
 - ► Is the car age below or above 8

Regression tree basics

How are trees and cuts created?

- ▶ You can't try out *all* possible segmentation combinations.
 - ▶ Why? Because, even if we limit the number of nodes, it is computationally infeasible in most of the cases.
- ► CART offers a process to try out many options and pick a set of decision rules
- ► The outcome of CART is a set of a prediction **rules** as well as predicted values for *y*
- CART has no formulae
- ► Not coefficients anymore

Today: Understanding CART in a few steps

Single predictor

- Multiple predictors
- ► Looking into the process which variable matters?
- Dealing with overfitting
- ► Will show case study along with process

- ► CART is based on a binary splitting algorithm.
- ► Take a predictor, find a cut-off
- Create two bins below, above the cutoff
- What is the optimal cut-off?
- ▶ The one that creates a separating rule that yields the greatest predicting power
- ▶ Predicted value is calculated as mean price at each bin.
 - ▶ Why mean? Because it minimizes RMSE given cutoff values.

- Separation process
- \triangleright We have a set of predictors, $x_1...x_p$
- Start with x₁

- Look through all values.
 - For $x_1 = k$, see calculate RMSE
- ▶ Pick the value that yields the model with smallest RMSE.
- Repeat for all predictors
- ▶ Pick the predictor AND the cutoff, that yields the the smallest RMSE.

- ► How we make predictions?
- ▶ For each bin, the predicted price will be the simple average of observations in that bin.

- ▶ We have a set of predictors, $x_1...x_p$
 - Start with x₁ and pick the value that yields the model with smallest RMSE.
 - Repeat for all predictors.
 - Pick the predictor AND the cutoff, that yields the the smallest RMSE.
- Here: check on dozen variables we have
- ▶ Pick age of car AND 8 yr as cut-off
 - ► 1-7 right group, average price is 12 thousand dollars (77 obs).
 - ▶ 8 and more left group, average price is 4 thousand (256 obs).

CART vs Linear Regression 1

- ► Nr.1. Fitting rule: similar
- ► There is a basic similarity.
- ▶ Both aim at finding a model to minimize a loss function.
- ▶ It is the same loss function of sum of squared residuals (MSE).
- ▶ But regression finds a global optimum while CART does not
 - because it thinks one step ahead only

- As with bins, we can have more than 2.
- Once again, separate step by step
- ▶ We now have 3 bins (called nodes).
- We start again, and separate at a node, creating 4 bins (nodes).
- ▶ We repeat this, till a stopping point.

Measuring fit and stopping rules

- ▶ A regression tree is the result of a series of binary splits of the sample
- ► The subsamples that result from splits are called bins and are represented as nodes of the tree
- ▶ With a single binary x, there is only one split possible; thus the tree has two levels with two terminal nodes
- ▶ With a single non-binary *x*, the algorithm starts with one split that improves the fit the most, and carries on to further splits within each bin
- ▶ The splitting algorithm stops as dictated by a stopping rule
- The result of the algorithm is a set of bins (the terminal nodes) that cover the entire sample. The predicted \hat{y} values are the average y value within each bin

CART-decision tree

Step function

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 000000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

CART with a single predictor (age)

CART-decision tree

Step function

CART M2 output summary

Category	Number of observations	Average_price
Age 0-4	38	14194.84
Age 5-7	39	9408.56
Age 8-12	86	5870.52
Age 13 or more	170	2734.54

Note: The predicted y values from CART M2, a regression tree grown by CART allowing for three levels.

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 000000
 0000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

CART with a single predictor (age)

CART-decision tree

Step function

CART with a single predictor (age)

Linear fit

Step function

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 0000000
 000
 00
 0
 0
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Predicting price with age: a comparison of CART and OLS models

Model	Description	RMSE
CART M1	2 term. nodes	2781.06
CART M2	4 term. nodes	2074.46
CART M3	5 term. nodes	1969.52
OLS M1	1 variable only	2357.01

Note: Age is the only predictor. RMSE from single 30% test set.

Multiple predictors

- ▶ With multiple predictors, as we grow trees, at each step, we consider
 - all the terminal nodes
 - all predictors and
 - ▶ all possible cut-offs for each and every predictor
- ▶ Pick the node-predictor-cutoff that leads to the largest drop in MSE.
- Repeat.

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 000000
 0000
 000
 00
 0
 00
 00
 00
 00
 0
 00
 00
 00
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Multiple predictors

Multiple predictors

- ▶ With multiple predictors, we consider all predictors and possible cut-offs step by step and grow trees.
- ▶ The hard part is to know when to stop.
- Every split will improve fit.
- ▶ But: overfitting...
- So we employ a stopping rule.

Stopping rule and prediction

- ▶ The binary splitting process continues until a stopping criterion is reached.
- ▶ Minimum number of observations in a bin for further splitting
- ▶ The number of observations in any terminal node.
- ► Minimum fit improvement a split is made only if it improves the fit of the by a minimum amount = the complexity parameter(cp)
- Stopping rule strictness will define size of tree.

CART process review with some jargon

- ▶ The method is called **binary splitting**. It is a **top-down**, **greedy** approach.
- ► Top-down because it begins at the top of the tree and then successively splits the predictor space; each split is indicated via two new branches further down on the tree.
- ▶ **Greedy** because at each step of the tree-building process, the best split is made at that particular step, rather than looking ahead and picking a split that will lead to a better tree in some future step.
 - Disadvantage: Myopic-does not take into account how a split(r) will affect a split (r+1, r+2, etc)
 - ► Advantage: it's (very) fast

CART vs Linear regression

- ▶ . Output: different but with a similarity
- ▶ Output for OLS will be a set of coefficient estimates
- ▶ Output for CART will be a set of decision rules.
- Similarity
- ▶ We can take output that we get in the training data and use it on the test data.
 - ▶ We also use it on the live data.

CART vs OLS: logic

Intro

Predictions: different logic

- ► For regression
 - ightharpoonup if $x_1 \neq x_2$
 - ightharpoonup then $\hat{y}_1 \neq \hat{y}_2$
- ► For CART

 - \triangleright BUT x_1, x_2 in $R_i x$
 - $\blacktriangleright \text{ then } \hat{v}_1 = \hat{v}_2$

- examples for cars
 - ► age=2, age=3
 - price will be different by 0.5K
 - ▶ age=2, age=3
 - ▶ both in node age<3.5
 - price is same (14K)

CART overview

- ▶ The advantage of CART is pattern discovery and easy interpretation.
- ► Sometimes easier than linear regression
- ► Decision trees (=bins) easy to explain
- As a prediction method, performance is not so great.
- ▶ But CART is building block of some top performing ML tools.

What's wrong with trees?

- ► Two key problems
- Overfitting

- ▶ Remember the price age step-function with 9 nodes.
- Splitting is not robust.
 - ► Change a few variables, and a split might alter at another point
 - Leading to a completely different tree!
 - ▶ This comes from the fact that a split at t, does note take into account future options.

Improving on CART

- ► A smaller tree with fewer splits might be a better idea
 - More stability
 - ► Worse in sample fit
- ► Solution 1: early (tough) stopping rule
 - ► Stop when drop in RSS is below a threshold (cp)
 - ► Short-sighted: a split now may be not so important but followed by an important split later
- ► Solution 2: grow a tree and cut back = pruning
 - ► Grow a tree as large as possible
 - Cut back
 - ► Turns out, this is better...

Pruning the tree

- ► Grow a large tree first, with a stopping rule that lets it grow big
- ▶ and prune it *afterwards* by deleting some of the splits, with the goal of arriving at a better prediction..
- ▶ Cost complexity pruning (= weakest link pruning) is used to do this.
- Pruning produces a better model

Pruning

- Grow a very large tree:
- Cp very low and/or stop bucket very low

Pruning

- Grow a very large tree
- Cp very low and/or stop bucket very low
- Prune: get to fewer nodes.

Variable importance

- Learning how predictions are made is rather difficult.
 - Unlike for a regression model, we do not have coefficient estimates.
 - A variable appear at many splits.
- **variable importance:** measures how much fit improved when a particular *x* variable is used for splitting, summed across all splits in which that variable occurs.
 - Expressed as the share of fit improvement (MSE reduction) due to the particular x variable
 - relative to the overall improvement of fit achieved by the regression tree
 - ▶ as opposed to a prediction that doesn't use any x variables
- ► The measures how important a variable is in terms of helping improve prediction
- ► High variable importance means that given variable plays an important role in prediction.

Variable importance plot

- Variable importance for a regression tree on the holdout set.
- Odometer and age are about equally important predictors while other variables help substantially less

Variables used

- Important variable are used early and frequently
- Here: age:odometer

A regression tree is a non-parametric regression

- A regression tree with multiple x variables considers all splits across all x variables and chooses the split that improves the fit the most
- ► The regression tree is a non-parametric regression, one which approximates any functional form with a step function and includes interactions
- ► A regression tree grown with CART includes only the most important interactions and the most important steps of a step function
- Pruning means first growing a large regression tree with a lenient stopping rule, and then erasing final splits one by one to improve fit in the test set (or cross-validated test sets)
- Pruning tends to produce a better fit in the test sets than a strict stopping rule, but even pruning tends to leave regression trees overfitting the original data

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 ○○○○○
 ○○○○○
 ○○○
 ○○
 ○○
 ○○
 ○●
 ○○
 ○

Pros and Cons of Using a Regression Tree for Prediction

Feature	Linear regression (OLS)	Regression tree (CART)
Solution method	Formula	Algorithm without a formula
Solution goal	Minimize loss (MSE)	Minimize loss (MSE)
Solution optimality	Finds best possible linear regression, but only given the included <i>x</i> variables	Greedy algorithm; does not find best possible tree
Variable selection	Pre-defined list of x variables	No pre-defined list
Main results	Set of coefficient estimates; pre- diction by plugging into formula	Set of terminal nodes; prediction by specifying values of x variables
Predicted y value and x values	Different \hat{y} for different x values	May have same \hat{y} for different x values if in the same bin
Linear relationship between x and average y	Captures a linear relationship	Approximates linearity by step function
Nonlinear relationship between x and average y	Need to pre-specify functional form to approximate nonlinearity	Approximates nonlinearity by step function

 CART
 Single x
 CS.A1
 Multiple x
 Process
 Pruning
 CS.A2
 VarImp
 CS.A2
 Pro/Con
 CS.A3
 Sum

 00000
 000000
 000
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Case Study: Regression tree summary and discussion

Model	Number of variables	Describe	RMSE
CART M1	1	2 levels	2781.06
CART M2	1	3 levels	2074.46
CART M3	1	4 levels	1969.52
CART M4	7	cp = 0.01	1892.96
CART M5	7	cp = 0.002	1892.35
CART M6	7	cp = 0.0001	2072.60
CART M7	7	pruned	1818.09
OLS M2	7	linear	1905.85
OLS M3	7	w/ polynomial terms	1636.50

Predictive performance of all regression tree models by the test set RMSE.

Case Study: Regression tree summary and discussion

- ▶ Pruned CART or small CART are best, pruned is marginally best
- ▶ OLS with some feature engineering (functional form for key vars) are better than any CART
- Advantage of CART is that it is automatic, no need to look for functional form. But worse performance than OLS *with* feature engineering.

Main takeaways

- A regression tree is a method for predicting y based on x variables using an automated algorithm that approximates any functional form and any interaction between the x variables
 - A regression tree splits the sample into many bins according to values of the *x* variables and predicts *y* as the average within those bins
 - ▶ Regression trees can be thought of as non-parametric regressions
 - A regression tree is prone to overfitting the data even after pruning. For this reason, it is rarely used for prediction in itself