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Regression, LASSO, machine learning

P Regression
» Analyst defines variables via feature engineering, including functional form selection
(polynomials, splines, interactions)
> Analyst defines a set of possible models

> Analyst selects best model trying out various options (Best model selected by
cross-validated RMSE)
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Regression, LASSO, machine learning

P Regression
» Analyst defines variables via feature engineering, including functional form selection
(polynomials, splines, interactions)
> Analyst defines a set of possible models
> Analyst selects best model trying out various options (Best model selected by
cross-validated RMSE)
» Regression with LASSO
» Analyst defines variables via feature engineering, including functional form selection
(polynomials, splines, interactions)
» Analyst defines broadest model
» Algorithm selects best model
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Regression, LASSO, machine learning

P Regression
» Analyst defines variables via feature engineering, including functional form selection
(polynomials, splines, interactions)
> Analyst defines a set of possible models
> Analyst selects best model trying out various options (Best model selected by
cross-validated RMSE)
» Regression with LASSO
» Analyst defines variables via feature engineering, including functional form selection
(polynomials, splines, interactions)
» Analyst defines broadest model
» Algorithm selects best model
» Machine learning (Random Forest)
» Analyst defines set of variables. No functional form selection.
» Algorithm defines a variety of possible models.
> Algorithm selects best model (Best model selected by cross-validated RMSE)
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How does ML work?

» Regression — finds a single solution.
» You run an OLS regression and it yields one single output (estimated coefficients),
calculated by formulae.
» LASSO a numerical algorithm finds coefficients and the tuning parameter.
» Machine learning is different

» No single best solution by formulae
» Search through a set of possible prediction models

» That best captures the relationship.
» In terms of prediction

» Both estimate the model on the training set
» And we avoid overfitting on the test set (and hope for external validity).
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Typical ML prediction procedure

» We start with the data at hand.
First, cut off the hold-out set.

» For what remains, we create k-times a training and test datasets, building the
model on train set, and evaluating it on the test sets.

v

> We take the average of test set loss functions (e.g. MSE) and select the model
with the best fit.

» Then, we take that very model, re-estimate it on our dataset save the holdout
sample to get parameter estimates.

» Finally we evaluate it on the hold-out sample to estimate the fit we can expect on
the live data.
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Roadmap

» Growing one tree [lecture 3]
» The idea of regression trees (or CART)
» Understand ML basics - finding an optimal relationship by trying
> How to develop (grow) a tree
» How to make it less prone to overfitting [lecture 4]
» Go back to random sampling, and bootstrap
» Random forest (or RF)
» Boosting: GBM
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Machine learning: Regression Trees with CART

> Regression Tree: Basic idea is that relationships are modelled as a series of binary
decisions (splits)

» Classification and Regression Trees (CART) is a regression tree algorithm

» Introduce cart with the case study
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Case Study: CART for used cars price prediction

» Case study: used-cars

» The used-cars data includes data on offers of used Toyota Camry cars advertised in
the Chicago and Los Angeles areas, in 2018.

» The dataset has N=477 observations.

» Small dataset + simplicity: Single training—test split instead of k-fold
cross-validation. Our training set is a random 70 percent of the original data (N =
333).
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Case Study: CART for used cars price prediction

» Relationships between y and an x are
modeled as a series of binary decisions
(splits)
> |s the car age below or above 8

age>=8
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Regression tree basics

How are trees and cuts created?
» You can't try out all possible segmentation combinations.
» Why? Because, even if we limit the number of nodes, it is computationally infeasible
in most of the cases.

» CART offers a process to try out many options and pick a set of decision rules
» The outcome of CART is a set of a prediction rules as well as predicted values for
y

» CART has no formulae

» Not coefficients anymore
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Today: Understanding CART in a few steps

» Single predictor
» Multiple predictors
» Looking into the process - which variable matters?

» Dealing with overfitting

> Will show case study along with process
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CART with a single predictor

CART is based on a binary splitting algorithm.
Take a predictor, find a cut-off

Create two bins - below, above the cutoff

What is the optimal cut-off?

The one that creates a separating rule that yields the greatest predicting power

vVvyvyVvVvyyy

Predicted value is calculated as mean price at each bin.
» Why mean? Because it minimizes RMSE given cutoff values.
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CART with a single predictor

» Separation process

» We have a set of predictors, x1...xp
» Start with xq
» Look through all values.
» For x; = k, see calculate RMSE
» Pick the value that yields the model with smallest RMSE.

> Repeat for all predictors
» Pick the predictor AND the cutoff, that yields the the smallest RMSE.
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CART with a single predictor

» How we make predictions?

» For each bin, the predicted price will be the simple average of observations in that
bin.
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CART with a single predictor

» We have a set of predictors, xi...x,

» Start with x; and pick the value that
yields the model with smallest
RMSE.

» Repeat for all predictors.

» Pick the predictor AND the cutoff,
that yields the the smallest RMSE.

» Here: check on dozen variables we
have
» Pick age of car AND 8 yr as cut-off
» 1-7 — right group, average price is 12
thousand dollars (77 obs).

> 8 and more - left group, average
price is 4 thousand (256 obs).
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CART vs Linear Regression 1

» Nr.1. Fitting rule: similar

» There is a basic similarity.
» Both aim at finding a model to minimize a loss function.

» It is the same loss function of sum of squared residuals (MSE).

» But regression finds a global optimum while CART does not
» because it thinks one step ahead only
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CART with a single predictor

» As with bins, we can have more than 2.
» Once again, separate step by step
age >= » We now have 3 bins (called nodes).
> \We start again, and separate at a
node, creating 4 bins (nodes).
> We repeat this, till a stopping point.

age >= 13 age>=5
2735 5871 9409 1
n= 170 n= 86 n= 39 =,
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Measuring fit and stopping rules

> A regression tree is the result of a series of binary splits of the sample

» The subsamples that result from splits are called bins and are represented as nodes
of the tree

» With a single binary x, there is only one split possible; thus the tree has two levels
with two terminal nodes

> With a single non-binary x, the algorithm starts with one split that improves the fit
the most,and carries on to further splits within each bin

» The splitting algorithm stops as dictated by a stopping rule

» The result of the algorithm is a set of bins (the terminal nodes) that cover the
entire sample. The predicted y values are the average y value within each bin
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CART with a single predictor (age)

CART-decision tree Step function
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CART with a single predictor (age)

CART-decision tree Step function

20000 +
5634
33 17500 -

age >= 15000 -

age >= 13 age>=5
2735 5871 9409 1
n= 170 n= 86 n=39 n=.

15. Introduction to Machine Learning

12500

10000 ~

7500

Price (US dollars)

5000 -

2500

Age (years)

Gabor Békés



CS.A1
00®000

CART M2 output summary

Category Number of observations Average price
Age 0-4 38 14194 .84
Age 5-7 39 9408.56
Age 8-12 86 5870.52
Age 13 or more 170 2734.54

Note: The predicted y values from CART M2, a regression tree grown by CART allowing for three levels.
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CART with a single predictor (age)

CART-decision tree Step function
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CART with a single predictor (age)

Linear fit Step function
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Predicting price with age: a comparison of CART and OLS models

Model Description RMSE

CART M1 2 term. nodes 2781.06
CART M2 4 term. nodes 2074.46
CART M3 5 term. nodes 1969.52
OLS M1 1 variable only  2357.01

Note: Age is the only predictor. RMSE from single 30% test set.
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Multiple predictors

» With multiple predictors, as we grow trees, at each step, we consider

» all the terminal nodes
» all predictors and
» all possible cut-offs for each and every predictor

» Pick the node-predictor-cutoff that leads to the largest drop in MSE.
> Repeat.
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Multiple predictors
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Multiple predictors

v

With multiple predictors, we consider all predictors and possible cut-offs step by
step and grow trees.

The hard part is to know when to stop.
Every split will improve fit.

But: overfitting...

vvyyypy

So we employ a stopping rule.
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Stopping rule and prediction

The binary splitting process continues until a stopping criterion is reached.
Minimum number of observations in a bin for further splitting

The number of observations in any terminal node.

vvyyy

Minimum fit improvement - a split is made only if it improves the fit of the by a
minimum amount = the complexity parameter(cp)

v

Stopping rule strictness will define size of tree.
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CART process review with some jargon

» The method is called binary splitting. It is a top-down, greedy approach.

» Top-down because it begins at the top of the tree and then successively splits the
predictor space; each split is indicated via two new branches further down on the
tree.

» Greedy because at each step of the tree-building process, the best split is made at

that particular step, rather than looking ahead and picking a split that will lead to
a better tree in some future step.
> Disadvantage: Myopic—does not take into account how a split(r) will affect a split
(r+1, r+2, etc)
> Advantage: it's (very) fast
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CART vs Linear regression

» . Output: different but with a similarity

» OQutput for OLS will be a set of coefficient estimates
» Output for CART will be a set of decision rules.

» Similarity
> We can take output that we get in the training data and use it on the test data.
» We also use it on the live data.
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CART vs OLS: logic

Predictions: different logic

» For regression » examples for cars
> if x; # x P> age=2, age=3
» then ¥1 # > » price will be different by 0.5K
» For CART
> if x1 £ x2 > age=2, age=3
> BUT x1,x2 in Rix > both in node age<3.5
> then 1 = 7 > price is same (14K)
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CART overview

» The advantage of CART is pattern discovery and easy interpretation.
» Sometimes easier than linear regression

» Decision trees (=bins) - easy to explain

> As a prediction method, performance is not so great.
» But CART is building block of some top performing ML tools.
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What's wrong with trees?

» Two key problems

» Overfitting
» Remember the price - age step-function with 9 nodes.

» Splitting is not robust.

» Change a few variables, and a split might alter at another point

» Leading to a completely different tree!

» This comes from the fact that a split at t, does note take into account future
options.
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Improving on CART

> A smaller tree with fewer splits might be a better idea

» More stability
» Worse in sample fit

» Solution 1: early (tough) stopping rule

> Stop when drop in RSS is below a threshold (cp)
» Short-sighted: a split now may be not so important but followed by an important
split later

» Solution 2: grow a tree and cut back = pruning

» Grow a tree as large as possible
» Cut back
» Turns out, this is better...
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Pruning the tree

» Grow a large tree first, with a stopping rule that lets it grow big

» and prune it afterwards by deleting some of the splits, with the goal of arriving at
a better prediction..

» Cost complexity pruning (= weakest link pruning) is used to do this.

» Pruning produces a better model
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Pruning

» Grow a very large
tree: 8

» Cp very low and/or
stop bucket very low

Gabor Békés
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Pruning

» Grow a very large
tree

» Cp very low and/or
stop bucket very low

> Prune: get to fewer

age >=13 odometer >=8
nodes. 2735 5871 8287
n= 170 n= 86 n=. 25

age >= 17 odometer >=9 age >=4 odometer >=4

odometer >=9
1978 3260 6894 5458 8415
n= 81 n= 85 —4 n= 74 n= 12
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Variable importance

» Learning how predictions are made is rather difficult.
» Unlike for a regression model, we do not have coefficient estimates.
» A variable appear at many splits.

> variable importance: measures how much fit improved when a particular x
variable is used for splitting, summed across all splits in which that variable occurs.

» Expressed as the share of fit improvement (MSE reduction) due to the particular x

variable
> relative to the overall improvement of fit achieved by the regression tree

» as opposed to a prediction that doesn’t use any x variables
» The measures how important a variable is in terms of helping improve prediction

» High variable importance means that given variable plays an important role in
prediction.

Gabor Békés
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Variable importance plot

» Variable importance for a

regression tree on the holdout odometer |
set. e |
» Odometer and age are about doalor |
equally important predictors L —
while other variables help 5 S| m—
substantially less § condionoos | e
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cylinds | @
XLE+ @
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o% 10% 20% 30% 40%

Importance
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Variables used

Important variable are used early and

frequently 5634
3.
> Here: age:odometer age >= 8-(
3788 11771
n=256 =77

age >= 13 odometer >= 8
2735 5871 445
n-170 n—86 n-52

age >=17 odometer >= 9 odometer >= 4
8287
n=25

1978 3423 5458 8415 12396( 1
n81n89n74n12 n=33{ n=
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A regression tree is a non-parametric regression

> A regression tree with multiple x variables considers all splits across all x variables
and chooses the split that improves the fit the most

» The regression tree is a non-parametric regression, one which approximates any
functional form with a step function and includes interactions

» A regression tree grown with CART includes only the most important interactions
and the most important steps of a step function

» Pruning means first growing a large regression tree with a lenient stopping rule,
and then erasing final splits one by one to improve fit in the test set (or
cross-validated test sets)

» Pruning tends to produce a better fit in the test sets than a strict stopping rule,
but even pruning tends to leave regression trees overfitting the original data
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Linear regression (OLS)

Pro/Con
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Pros and Cons of Using a Regression Tree for Prediction

Regression tree (CART)

Solution method
Solution goal
Solution optimality

Variable selection
Main results

Predicted y value and x values

Linear relationship between x
and average y

Nonlinear relationship between
x and average y

Formula

Minimize loss (MSE)

Finds best possible linear regres-
sion, but only given the included
x variables

Pre-defined list of x variables
Set of coefficient estimates; pre-
diction by plugging into formula

Different y for different x values
Captures a linear relationship

Need to pre-specify functional
form to approximate nonlinearity

Algorithm without a formula
Minimize loss (MSE)

Greedy algorithm; does not find
best possible tree

No pre-defined list

Set of terminal nodes; predic-
tion by specifying values of x
variables

May have same y for different
x values if in the same bin
Approximates linearity by step
function

Approximates nonlinearity by
step function
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Case Study: Regression tree summary and discussion

Model Number of variables Describe RMSE
CART M1 1 2 levels 2781.06
CART M2 1 3 levels 2074.46
CART M3 1 4 levels 1969.52
CART M4 7 cp = 0.01 1892.96
CART M5 7 cp = 0.002 1892.35
CART M6 7 cp = 0.0001 2072.60
CART M7 7 pruned 1818.09
OLS M2 7 linear 1905.85
OLS M3 7 w/ polynomial terms  1636.50

Predictive performance of all regression tree models by the test set RMSE.
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Case Study: Regression tree summary and discussion

» Pruned CART or small CART are best, pruned is marginally best

» OLS with some feature engineering (functional form for key vars) are better than
any CART

» Advantage of CART is that it is automatic, no need to look for functional form.
But worse performance than OLS with feature engineering.

Gabor Békés
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Main takeaways

> A regression tree is a method for predicting y based on x variables using an
automated algorithm that approximates any functional form and any interaction
between the x variables

> A regression tree splits the sample into many bins according to values of the x
variables and predicts y as the average within those bins

» Regression trees can be thought of as non-parametric regressions

> A regression tree is prone to overfitting the data even after pruning. For this reason,
it is rarely used for prediction in itself
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