16. Random Forests

Gábor Békés

Data Analysis 3: Predictio

2020

Slideshow for the Békés-Kézdi Data Analysis textbook

Bagging

- ► Cambridge University Press, 2021
- gabors-data-analysis.com
 - Download all data and code: gabors-data-analysis.com/dataand-code/
- ► This slideshow is for Chapter 16

Trees

- ► CART is great for
 - ► Capturing non-linear, complicated panels
 - ► Yielding a model that can be explained
- ▶ The problem with CART is it's poor prediction performance
 - Avoiding the overfitting is not working out greatly.

Sum

From a tree to a forest: ensemble methods

- ► CART problem: dependence on individual observations is high
 - Early decisions may depend on small differences between choices.
- Instead of a single tree, let us have many.
 - Create many similar datasets
 - Grow trees
 - Aggregate
 - ► Bagging= Bootstrap aggregation

16. Random Forests 4 / 43 Gábor Békés

From a tree to a forest: ensemble methods

- ► Ensemble methods combine the results of many imperfect models to produce a prediction
- ► Compared to a single model built to perfection, ensemble methods tend to produce much better predictions

16. Random Forests 5 / 43 Gábor Békés

Remember: Bootstrap process

- ▶ Start with original dataset and draw many repeated samples with replacement.
- ▶ The observations are drawn randomly one by one from the original dataset; once an observation is drawn it is "replaced" to the pool so that it can be drawn again, with the same probability as any other observation.
- ▶ The drawing stops when it reaches the size of the original dataset.

16. Random Forests 6 / 43 Gábor Békés

CS.A3

Sum

Remember: Bootstrap process

- ▶ One outcome dataset
 - Same sized sample to the original dataset.
 - Includes some of the original observations multiple times,
 - ▶ Does not include some of the other original observations. For observations included, each variable is kept as is.
- Result is many datasets
 - Many repeated samples that are different from each other.

16. Random Forests 7 / 43 Gábor Békés

Bagging process

- ▶ Instead of one tree, we'll grow many (K) trees
- Create K bootstrapped samples
 - ► Same sized, same properties yet actual differences
- ▶ Build *K* trees, and estimate
 - Grow a tree on each sample
 - ▶ With a pre-defined stopping rule instead of pruning
 - Output: set of decision rules.
- Assemble the K set of rules and estimate it on test sample
- ► Average out predicted values (*K* values for each observation)
- ► The average is the prediction.

16. Random Forests 8 / 43 Gábor Békés

Bagging process

- ► Assemble the K trees (=set of rules) and estimate it on test sample
- ► Average out predicted values (*K* values for each observation)
- ► The average is the prediction.
- ► Cross-validation: may do this five times
- ▶ Bagging = Bootstrap the sample create many samples + Aggregation average results
- ► Increase stability of results better out-of-sample performance
- ▶ It may be used for prediction, but we'll add a tweak...

16. Random Forests 9 / 43 Gábor Békés

Random forest

Bagging

- ► Bagging with a tweak decorrelate trees
- ► Keep the idea of using bootstrapped samples
- ► BUT!
- Instead of allowing all variables to be used at any given mode...
- ...we randomly select m variables
 - m is about the sqrt of number of variables p.
 - ightharpoonup m = 4 is often used as minimum
- \triangleright At each node, we pick one variable out of m
- ► Yielding a set of decorrelated trees
- ► Helps reduce the risk of overfitting

16. Random Forests 10 / 43 Gábor Békés

Sum

Random forest vs bagging

Bagging

- ▶ Why are we considering a random sample of *m* predictors instead of all *p* predictors for splitting?
 - ▶ If we have a very strong predictor in the data set along with a number of other moderately strong predictor,
 - → in the collection of bagged trees, most or all of them will use the very strong predictor for the first split!
 - ► -> all bagged trees will look similar.
 - ▶ Hence all the predictions from the bagged trees will be highly correlated.
 - Averaging many highly correlated quantities does not lead to a large variance reduction.
 - Random forests "de-correlate" the bagged trees leading to more reduction in variance.

16. Random Forests 11/43 Gábor Békés

Random forest vs bagging

Bagging

- ► Decorrelate by using fewer possible predictors
- ► Thus, artificially making each model worse...
- ▶ But in sum, we are making a better model...
 - ... in a slightly counter-intuitive way

16. Random Forests 12 / 43 Gábor Békés

Tuning parameter

Bagging

- ► The advantage of random forest over other methods is that it needs relatively little tuning.
- ► Tuning = set of parameters
 - Often selected by CV
- ▶ OLS has no such parameter it is based on a formula
- ▶ LASSO has λ , computed along with finding coefficients.
- ▶ Other machine learning methods have typically more tuning parameters
 - Also called hyperparameters

16. Random Forests 13/43 Gábor Békés

Random Forest tuning

Bagging

- ► T=Number of trees
 - ► T=500 as default
- m the number of variables checked for a spit
 - typically sqrt of number of variables.
 - ► Could be determined by cross-validation
- ▶ Depth of trees (size) = Minimum node size
 - Where tree building stops

16. Random Forests 14 / 43 Gábor Békés

The practice of prediction with random forest

Bagging

- Random forest is an ensemble method combining the results of hundreds of regression trees
- ▶ The most important elements of the random forest are
 - bagging: aggregating the predictions of many trees grown on bootstrap samples of the data
 - ▶ each tree is grown to be large, using a simple stopping rule
 - decorrelating trees: when growing each tree, we use only a subset of the variables for each split
- ► In practice, carrying out prediction with a random forest is quite easy due to good software solutions with sensible default options

16. Random Forests 15 / 43 Gábor Békés

Airbnb London data

Bagging

- Airbnb prices
- Whole of London, UK
- ▶ http://insideairbnb.com/
- ▶ 50K observations
- > 94 variables, including many binaries for location and amenities
- ► Key variables: size, type, location, amenities
- Quantitative target: price (in USD)

16. Random Forests 16 / 43 Gábor Békés

Airbnb: From data to Random Forest

- Some tasks same as in regression
 - Data cleaning

Bagging

- Filtering on types we care about
- ► Encoding information (here: amenities is text-> set of binaries)
- Some tasks are not needed
 - No functional form decision
 - No variable selection
- ► No interaction picking
- Some new tasks
 - ▶ Set tuning parameters (size of trees, how many variables to try out).
 - ► Can add an algo that tries out a bunch of combinations.

16. Random Forests 17 / 43 Gábor Békés

Airbnb London data – running the algo

- From cleaned data
- Just run the algo
 - With minimal tuning
- ► That is it.
- Output

Bagging

- ► Large pool of decision rules: T=500 set of trees
- Nothing to interpret
- ► Black box model
- ► RMSE is 44.5 vs 48.1 (OLS)

16. Random Forests 18 / 43 Gábor Békés

Black box model

Bagging

- ▶ Random Forest (and other ML models) are often called "Black Box" models.
- ► They make a prediction, but in lack of formula, we do not really know how an actual prediction is created
- ▶ Business when could this be a problem?

Bagging / Random Forest - a drawback

- ▶ One drawback of the process is we no longer have a nice tree, which we could interpret.
- ► We have, instead K trees,

Bagging

- ► The average is the predicted value.
- ▶ It is now hard to interpret the model!
- We can always pick a single tree to look at.
- ► Look at Variable importance
- ► Add a new way to look at partial correlations

16. Random Forests 20 / 43 Gábor Békés

The variable importance plot

Bagging

- ▶ How do we decide which variables are most useful in predicting the response?
- ► Variable importance plot
- ► For each variable it captures the overall contribution to reducing RMSE
- Shows relative importance
- Calculated for each tree and averaged over all trees.

Partial dependence plot

Bagging

- ▶ Look at the relationship between predicted values and predictors
- ► For each value of a predictor, we can look at predicted values: Partial dependence plot (PDP)
- ► The PDP is a graph
 - values of the x variable on the horizontal axis
 - the values of average y on the vertical axis.
- Shows how average y differs for different values of x_i when all the other x values are the same.
- \triangleright The "partial" = differences wrt this x_i variable, conditional on all other x variables
 - ▶ differences attributed to them are "partialled out"

16. Random Forests 22 / 43 Gábor Békés

Partial dependence plot

Bagging

- ► Graphical visualizations of the marginal effect
- The partial dependence function tells us how the value of the variable x_i influences the model predictions
 - ▶ after we have "averaged out" the influence of all other variables.
 - ► For linear regression models, the PDP plots is a straight line whose slopes are equal to the model's beta parameter.
- ▶ If there are important interactions (as it is likely to be the case), these may be misleading.
 - ▶ Unlike in linear model, we do not explicitly take this into account.

16. Random Forests 23 / 43 Gábor Békés

Bagging

Airbnb London data - Variable Importance Plot 1

- Random Forest
 Variable Importance
 Plot
 - Normalized by total improvement.
 - All variables above cutoff.
- ▶ Too hard to read....

Airbnb London data - Variable Importance Plot 2

Bagging

- Random Forest
 Variable Importance
 Plot
 - Normalized by total improvement.
 - Top 10 variables easier to read

Bagging

Airbnb London data – Variable Importance Plot 3

- Random Forest
 Variable Importance
 Plot
 - Normalized by total improvement.
 - Top 10 variablesWith grouped factors
 - Grouping binary created for a factor as one variable

16. Random Forests 26 / 43 Gábor Békés

Airbnb London data - PDP plots

Numeric variable: looks linear

Bagging

Categorical variable: there is variation

16. Random Forests 27 / 43 Gábor Békés

Performance across subsamples

Bagging 0000000

	RMSE	Mean price	RMSE/price	
Apartment size				
Large apt	62.11	144.6	0.43	
Small apt	28.53	62.3	0.46	
Туре				
Apartment	42.32	92.8	0.46	
House	42.47	76.3	0.56	
Borough				
Kensington and Chelsea	65.11	146.3	0.45	
Westminster	62.39	131.0	0.48	
Camden	50.23	108.5	0.46	
Hackney	33.99	78.2	0.43	
Tower Hamlets	34.29	72.0	0.48	
Newham	31.94	63.3	0.50	
All	42.36	88.8	0.48	

16. Random Forests 28 / 43 Gábor Békés

Boosting

Bagging

- ▶ Boosting is another ensemble method based on trees
- ▶ Different tree building and aggregation algorithm

Boosting

Bagging

- ▶ Boosting is an alternative ensemble method.
- ► What's new?
- ► Bagging / random forest
 - grows independent trees,
- Boosting
 - Grows trees that build on each other.
 - ▶ Then, similarly to bagging, it combines all those trees to make a prediction.

 16. Random Forests
 30 / 43
 Gábor Békés

Boosting idea (1)

Bagging

- ▶ Boosting grow trees *sequentially*, using information from the previous tree to grow a better tree the next time.
- ► The information used from the previous tree is which observations were harder to predict.
- ▶ The new tree then puts more emphasis on fitting those observations.
- ➤ Typically, this is done by taking the residuals from the previous prediction and fitting a model on those residuals instead of the original target variable.

16. Random Forests 31 / 43 Gábor Békés

Boosting idea (2)

Bagging

- ► The prediction after having grown this next tree is not from the new tree only, but a combination of the new tree and the previous tree.
- ► Then, in the following step, the algorithm grows a yet newer tree building on that combined prediction, taking its residuals, and so on.
- ► The algorithm stops according to a stopping rule, such as the total number of trees grown.

16. Random Forests 32 / 43 Gábor Békés

Boosting idea (3)

Bagging

- ► The final ingredient in boosting is aggregation: Take all previous trees as well to make the final prediction.
 - ► Rather then using the best tree built at the end
- –>Ensemble methods.
- Instead of using the results from one (maybe the best) tree,
- Combine results from many trees even if they are known to be imperfect.
- New vs RF
 - ► Trees gradually built
 - don't want those many trees to be independent of each other.

16. Random Forests 33 / 43 Gábor Békés

Gradient boosting machine (GBM)

Bagging

- ▶ One boosting algorithm is Gradient boosting machine GBM
- ► The **gradient** part of its name refers to a search algorithm that it uses to finds a better fit.
- ▶ At every step, the new model doesn't differ very much from the previous one.
- ► GBM has more tuning parameters than random forest.
 - determine the complexity of trees,
 - the number of trees,
 - ▶ how we combine the trees to form the new prediction at each step,
 - how large each tree should be.

16. Random Forests 34 / 43 Gábor Békés

Predictive performance of different models

Bagging

Model	RMSE	
Linear regression (OLS)	48.1	
Linear regression (LASSO)	46.8	
Regression Tree (CART)	50.4	
Random forest (basic tuning)	44.5	
Random forest (atotuned)	44.7	
GBM (basic tuning)	44.6	
GBM (broad tuning)	44.4	

Note: Model descriptions in text. 5-fold cross-validation for all models. Some results may be package dependent.

16. Random Forests 35 / 43 Gábor Békés

Machine learning in practice

Bagging

- ► There are many other ML method, but <u>in our view</u>, Random Forest and Boosting are great.
- ▶ It is based on a classic statistical approach with well known features
 - ▶ It is useful to know regression trees, sometimes they are really illustrative
- ▶ RF is based on a very important idea in machine learning (bootstrap aggregation)

Most importantly:

- ► For cases when target is number
- ▶ RF/GBM perform the best among key methods, or very close to the best.

16. Random Forests 36 / 43 Gábor Békés

Key advantages of ML

Bagging

- 1. The most important advantage is that in terms of prediction, it performs better than regressions.
 - ▶ Some cases this is marginal, in other cases it is substantial.
- 2. Another advantage is the easy use
 - Once you have the features
 - ► Random Forest is easy to use
 - ► GBM is a bit harder but still easy to use
 - ► Get very good predictions right away
 - Easy to make the process automatic

16. Random Forests 37 / 43 Gábor Békés

A key problem with machine learning

▶ It is a black box...

Bagging

- ► Interpretations are difficult
 - ► Although several methods to peek into the black box
- ► Can't do analysis like
- ► What would happen if there was a tax on dogs/cats

Linear regression vs ML: Some trade-offs

Bagging

- ▶ Prediction accuracy versus interpretability.
 - Linear models are easy to interpret;
 - Splines, polynomials are hard;
 - ML models are impossible.
- Parsimony versus black-box.
 - a simpler model involving fewer variables over
 - a black-box predictor involving many may perform better, but harder to operate, understand, interpret.

16. Random Forests 39 / 43 Gábor Békés

Summary of methods

Bagging 0000000

	OLS	LASSO	CART	RF	GBM
Performance (RMSE)	48.1	46.8	50.4	44.5	44.4
Speed (in min)	0.07	0.3	0.4	19	756
Solution	closed form	algo	algo	algo	algo
Choice of tuning parameters	n.a.	easy	easy	easy	hard
Interpretation	easy	easy	easy	difficult	difficult
FE: Variable selection	hand	algo	algo	algo	algo
FE: Non-linear patterns	hand	hand	algo	algo	algo
FE: Interactions	hand	hand	algo	algo	algo

16. Random Forests 40 / 43 Gábor Békés

Big Data

Bagging

- ► What's different if dataset is very big
 - 1. Sheer size of the data require powerful new tools.
 - Have more potential predictors than appropriate for estimation need variable selection.
 - 3. Large datasets may allow for more flexible relationships than simple linear models.

Don't let the hype fool you.

Bagging

- ► Machine learning is basically curve fitting
 - Often great to find patterns
- Regressions still useful
- External validity is not solved by large data and powerful methods

16. Random Forests 42 / 43 Gábor Békés

Random Forest CS.A1 Interpretation CS.A2 Boosting CS.A3 ML Review Sum

Main takeaways

Bagging

- ▶ Random forest is a prediction method that uses several regression trees
 - ► Ensemble methods that combine predictions from many imperfect models can produce very good predictions
 - ▶ Random forest is the most widely used ensemble method based on regression trees; boosting is a more complicated but often better alternative
 - ▶ Both random forest and boosting are black box methods. We need to do additional diagnostics to uncover how the *x* variables contribute to our prediction.

 16. Random Forests
 43 / 43
 Gábor Békés