# 18. Forecasting from times series

Gábor Békés

Data Analysis 3: Prediction

2020

# Slideshow for the Békés-Kézdi Data Analysis textbook



- ► Cambridge University Press, 2021
- gabors-data-analysis.com
  - Download all data and code: gabors-data-analysis.com/dataand-code/
- ► This slideshow is for Chapter 18

# Forecasting basics

- ▶ Forecasting is a special case of prediction.
- $\triangleright$  Forecasting makes use of time series data on y, and possibly other variables x.
- ▶ The original data used for forecasting is a time series from 1 through T, such as  $y_1, y_2, ..., y_T$
- The forecast is prepared for time periods after the original data ends, such as  $\hat{y}_{T+1}, \hat{y}_{T+2}, ..., \hat{y}_{T+H}$ . This is the live time series data.
- Cross-validation with time series is necessary, and it's not trivial

#### Forecast horizon

- ▶ The length of the live time series data (here H) = the forecast horizon.
- ► Short-horizon forecasts are carried out for a few observations after the original time series;
  - ▶ 5-10 years of monthly data, forecast a 3-12 months ahead
  - ▶ 10 years of quarterly data, predict ahead of a few quarters
- ▶ Long-horizon forecasts are carried out for many observations.
  - ► Often: data on activity, operation
  - ▶ 5 years of daily data, forecast daily ahead for a year
  - ▶ 2 months of hourly activity data, predict weeks ahead

#### Cross-validation - option 1: test within data

- Forecast period relatively long compared to data.
- Example: predict for 1 year, data 6 years
- ► Long run serial correlation, trend less of an issue
- ▶ Insert test sets + use all remaining observations for the training sets
- ► Green: training set, Blue: test set. Yellow: holdout set



00000

# Cross-validation - option 2 Rolling window

- Rolling windows. Training set only before the test set
- Forecast period relatively short compared to data.
- Example: predict for 12 months, data 15 years
- Serial correlation matters
- ► Green: training set, Blue: test set. Yellow: holdout set



#### Cross-validation in time series

Forecast setup

Consider a forecast for horizon H (e.g., 12 months, or 365 days).

- ► For the holdout set, reserve the last *H* time periods in the original data and use the rest as the work set.
- From the work set, select *k* test sets as non overlapping complete time series of length *H*.
- ► For each test set, select the corresponding training set in one of the following two ways:
  - for long-horizon forecasts that don't use serial correlation, select all other observations, including those after the test set;
  - ▶ for short-horizon forecasts that use serial correlation, select the time series preceding the test set, in such a way that all training sets are of equal length.

#### Long-horizon forecasting: Seasonality and predictable events

- ► Look for aspect of data that matter for long time
- ► Focus on predictable aspects of time series
- ► Trend(s) + Seasonality + Other regular events
- ▶ Two options to model trend: estimate average change or trend line
- Seasonality especially true for forecasts with a daily or higher frequency such as hours or minutes
- ▶ Seasonality: model with set of variables (11 months), maybe interactions
- ► Other regular events set of binary vars

# Long-horizon forecasting: Trends - option 1

► First model - estimate average change

$$\widehat{\Delta y} = \hat{\alpha} \tag{1}$$

► For prediction this means

$$\hat{y}_{T+1} = y_T + \widehat{\Delta y}$$

$$\hat{y}_{T+2} = \hat{y}_{T+1} + \widehat{\Delta y} = y_T + 2 \times \widehat{\Delta y}$$
...
$$\hat{y}_{T+H} = y_T + H \times \widehat{\Delta y}$$

# Long-horizon forecasting: Trends - option 2

- ► Estimate trend line
- ► The simplest trend line is linear in time, with an intercept and a slope multiplying the time variable:

$$\hat{y}_t = \hat{\alpha} + \hat{\delta}t \tag{2}$$

- $ightharpoonup \hat{\alpha}$  is predicted y when t=0
- $\triangleright$   $\hat{\delta}$  tells us how much predicted y changes if t is increased by one unit.

### Long-horizon forecasting: Trends - compare options

Difference in models

- ▶ Model changes: assume that *y* continues from the last observation and increase by the same amount each time.
  - ▶ If last observation unusually large or small y value, a trend modeled as change would continue from that unusual value.
- ▶ Model trend line, we assume that *y* remains close to the trend line.
  - Last unusual observation would not matter for the forecast, because it would be the trend line.
- Neither approach is inherently better than the other

### Long-horizon forecasting: Seasonality

- ► Capture regular fluctuations
- ▶ Months, days of the week, hours, combinations

### An algorithm to build a models: Prophet

- ► Another option is an algo built by Facebook folks
- Prophet is a forecasting procedure algorithm https://facebook.github.io/prophet/
- ► Trends + seasonality + change in trends + add-on for special events (holidays)
- Find functional form flexibly, try out many different combinations
  - In a smart way

### ABQ swimming

- Swimming pool data
- Albuquerque (ABQ), New Mexico, USA
- Big data, transaction level entry data logged from sales systems
- ▶ 1.5m observations

#### Sample design

- ► Sample: Single swimming pool
- Aggregated: number of ticket sales per day
- ► After some sample design regular tickets only

### Modeling decisions

- ▶ Trend is simple use simple linear trend:  $\alpha t$ 
  - ► Maybe not really important at all
- Seasonality is important and tricky

# Daily ticket sales

Forecast setup

#### Daily sales - 1 year



#### Daily sales - 5 years



### Monthly and daily seasonality in the number of tickets sold

(a) Seasonality by months

Forecast setup



(b) Seasonality by days of the week



# Daily ticket sales: A heatmap

► Tool to model seasonality

- Each cell is average sales for a given combination of day and month over years
- ► Colors help see pattern



# Modeling

- ► Trend is simple linear trend
- Seasonality is tricky need to model and simplify
  - Months
  - ► Days of the week
  - USA holidays
  - Summer break
  - ▶ Interaction of summer break and day of the week
  - ▶ Interaction of weekend and month

#### Model features and RMSE

|              | trend | months | days | holidays | school*days | days*months | RMSE  |
|--------------|-------|--------|------|----------|-------------|-------------|-------|
| M1           | X     | Х      |      |          |             |             | 32.35 |
| M2           | X     | X      | X    |          |             |             | 31.45 |
| M3           | X     | X      | X    | X        |             |             | 29.46 |
| M4           | X     | X      | X    | X        | X           |             | 27.61 |
| M5           | X     | X      | X    | X        | X           | X           | 26.90 |
| M6 (log)     | X     | X      | X    | X        | X           |             | 30.99 |
| M7 (Prophet) | X     | X      | X    | X        | N/A         | N/A         | 29.47 |

Note: Trend is linear trend, days is day-of-the-week, holidays: national US holidays, school\*days is school holiday (mid-May to mid-August and late December) interacted with days of week. RMSE is cross-validated. Source: swim-transactions dataset. Daily time series, 2010–2016, N=2522 (work set 2010–2015, N=2162).

### Modeling steps

- ▶ We build a set of models.
- ► The winner has all these ingredients:
  - Months, days of the week, USA holidays
  - ► Interaction of summer break and day of the week
  - ► Interaction of weekend and month
- ▶ Tried level and log, level is better in terms of CV RMSE
- ► Took best model, re-estimated on full work and predicted for holdout

Sum

# Compared actual vs predicted on holdout set (2016)



# Diagnostics - holdout set (2016)

#### Figure: Actual v predicted for August



Figure: Monthly RMSE



# Using Prophet

- Prophet
  - ► Trends + seasonality + special events
- In our case study as good as simple model, not as good as best model
  - But fairly close
  - ► And automatic..

# Short-horizon forecasting: what is new?

Serial correlation

- ► Model how a shock fades away
- ▶ Autoregressive models— AR models, capture the patterns of serial correlation y at time t is regressed on its lags, that is its past values, t 1, t 2, etc.
- ► The simplest includes one lag only, AR(1):

$$y_t^E = \beta_0 + \beta_1 y_{t-1} \tag{3}$$

- lnterested in estimating  $\beta_1$  or as serial correlation coefficient is called, p.
  - ightharpoonup p = 1 is random walk, p = 0 is white noise

# Short-horizon forecasting: AR(1)

► One-period-ahead forecast from an AR(1)

$$\hat{y}_{T+1} = \hat{\beta}_0 + \hat{\beta}_1 y_T \tag{4}$$

► Forecasting to T + 2 would need  $y_{T+1}$  in the formula. – need to use its predicted value,  $\hat{y}_{T+1}$ :

$$\hat{y}_{T+2} = \hat{\beta}_0 + \hat{\beta}_1 \hat{y}_{T+1} = \hat{\beta}_0 + \hat{\beta}_1 (\hat{\beta}_0 + \hat{\beta}_1 y_T) = \hat{\beta}_0 (1 + \hat{\beta}_1) + \hat{\beta}_1^2 y_T \tag{5}$$

- As  $\beta_1$  is less than one (in absolute value), its square is smaller, and higher powers are even smaller practically zero after a while.
- ► Can have  $\Delta y_t = y_t y_{t-1}$  as target, too.

# Short-horizon forecasting: ARIMA

- ► ARIMA(p,d,q) models that are generalizations of the AR(1) model
- ► Can approximate any pattern of serial correlation.
- ightharpoonup ARIMA models are put together from three parts: AR(p), I(d) and MA(q).

# Short-horizon forecasting: AR(p)

 $\triangleright$  AR(p), which predicts  $y_t$  using up to p of its own lags:

$$\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 y_{t-1} + \hat{\beta}_2 y_{t-2} + \dots + \hat{\beta}_p y_{t-p}$$
(6)

- ► Flexible way to model how shocks fade away
- ► As we forecast further ahead use the predicted values in the formula,
  - ▶ additional error in the forecasts due to larger estimation error and model error.

# Short-horizon forecasting: ARMA(p,q)

- ► MA(q) models also capture serial correlation
- ▶ Useful when serial correlation drops suddenly to zero
  - ► AR(p) good when gradual decay
- AR+MA=ARMA ARMA(p,q) model has p + q + 1 coefficients to estimate
- ► ARMA model coefficients cannot be interpreted too complicated
- ▶ ARIMA(p,d,q) with I(d): whether the ARMA model is written in terms of y itself or its change,  $\Delta y$ .
- ► For more, see 18.U1.

# Short-horizon forecasting: ARIMA

- ► How to choose (p,d,q)?
- ► Whichever works best in a cross-validated exercise!
- ► Try out a few and pick the one that works best
- auto-arima an algo that tries out many options
- $\blacktriangleright$  keep it simple, d=0,1 and p=0,1,2 and q=0,1,2 rarely more
- Note: Large econometric literature on time series lot more about time series models one can learn.

#### Case- Shiller home price index

Case-Shiller home price index, Los Angeles

- Monthly index of home prices
- Data available: fred.stlouisfed.org
- Use 18 years of monthly data



#### Case Shiller home price data

- ▶ 18 years of data 2000-2017
- work: 2000-2016, holdout is 2017
- cross-validate with rolling window, 4-fold
  - ► train is 2000-2012, test is 2013
  - **.**..

- ► train is 2003-2015, test is 2016
- ▶ We'll predict 12 months ahead
  - ► RMSE symmetric and quadratic loss
  - ► Assume getting index right matters exactly the same

# Target variable

- ▶ What should be the target variable?
  - ► The price index
  - ► The log of the price index
  - ► First difference
  - ► We'll try out, and pick via cross-validation
- ▶ The model should include seasonal dummies (could be more complicated)
- ightharpoonup The model may include a linear trend or capture it with  $\Delta y$  as target
- ► The model can have any form of ARIMA

# Case- Shiller home price index - prediction from ARIMA models

Table: Models and CV RMSE

| id | target | ARIMA | trend | season | AR | T | MA | RMSE |
|----|--------|-------|-------|--------|----|---|----|------|
| M1 | р      | NO    | X     | Х      |    |   |    | 31.9 |
| M2 | p      | YES   |       |        | 1  | 1 | 2  | 9.5  |
| M3 | p      | YES   |       | X      | 1  | 1 | 0  | 4.1  |
| M4 | p      | YES   | X     | X      | 2  | 0 | 0  | 2.3  |
| M5 | dp     | NO    | X     | X      |    |   |    | 18.8 |
| M6 | Inp    | YES   |       | X      | 0  | 2 | 0  | 7.2  |

#### Prediction with best model M4



# Prediction with best model M4: Uncertainty





# VAR: vector autoregressions

- ▶ VAR models are a set of time series regressions with more than one variable
- ► VAR models have a regression for each variable; the lagged values of all variables are entered on the right-hand side of each equation, with the same number of lags everywhere
- ightharpoonup A VAR(1) model with two variables y and x is
  - $y_t^E = \beta_{10} + \beta_{11}y_{t-1} + \beta_{12}x_{t-1}$
- As with any time series regression, VAR models can have their variables in levels (logs) or changes (log changes) and can include trend lines and season dummies
- ▶ We can use x variables to help predict y with the help of VAR models. For time periods further ahead, VAR models use predicted values of the x variables when predicting y

## VAR forecast

Forecast setup

▶ One-period-ahead forecast for *y*, only need estimates from the first one:

$$\hat{y}_{T+1} = \hat{\beta}_{10} + \hat{\beta}_{11}y_T + \hat{\beta}_{12}x_T \tag{7}$$

- For forecasting y further ahead, we do need all coefficient estimates.
- Such forecasts use forecast values of x as well as y. A two-period-ahead forecast of y from a VAR(1) is

$$\hat{y}_{T+2} = \hat{\beta}_{10} + \hat{\beta}_{11}\hat{y}_{T+1} + \hat{\beta}_{12}\hat{x}_{T+1}$$
(8)

where  $\hat{y}_{T+1} = \hat{\beta}_{10} + \hat{\beta}_{11}y_T + \hat{\beta}_{12}x_T$ , and  $\hat{x}_{T+1} = \hat{\beta}_{20} + \hat{\beta}_{21}y_T + \hat{\beta}_{22}x_T$ . Forecasts for T+3, T+4, etc., are analogous.

## VAR characteristics

There are four important characteristics of a VAR:

- A VAR has a regression for each of the variables.
- ▶ The right-hand side of each equation has all variables.
- ► Right-hand-side variables are in lags only.
- ▶ All right-hand-side variables in all regressions have the same number of lags

# Additional predictors 1

#### Unemployment rate



## Change in unemployment rate



# Additional predictors 2

## In(Employment)



## Change in In(Employment)



## Case- Shiller home price index - Model selection 2

Table: Models and CV RMSE

| id  | target | ARIMA | trend | season | AR | T | MA | RMSE |
|-----|--------|-------|-------|--------|----|---|----|------|
| M1  | р      | NO    | Х     | Х      |    |   |    | 31.9 |
| M2  | p      | YES   |       |        | 1  | 1 | 2  | 9.5  |
| M3  | p      | YES   |       | X      | 1  | 1 | 0  | 4.1  |
| M4  | p      | YES   | X     | X      | 2  | 0 | 0  | 2.3  |
| M5  | dp     | NO    | X     | X      |    |   |    | 18.8 |
| M6  | Inp    | YES   |       | X      | 0  | 2 | 0  | 7.2  |
| M7a | dp     | VAR   |       |        |    |   |    | 7.8  |
| M7b | dp     | VAR   |       | X      |    |   |    | 4.5  |

Run the VAR model and compare to previous results. VAR with and without seasonality.

## Case- Shiller home price index - VAR

▶ In this case study, VAR did not improve on ARIMA.

# External validity

- External validity is about the stability of patterns in the data
- ► Such as trends, seasonality
- ▶ Big threat in time series forecasting
- Look across years to see stability
  - ► Four rolling windows, test sets were 2013,14,15,16

## Case- Shiller home price index - model fit on test sets

Table: Models and CV RMSE

|           | Fold1 | Fold2 | Fold3 | Fold4 | Average |
|-----------|-------|-------|-------|-------|---------|
| M1        | 14.90 | 17.58 | 34.44 | 48.58 | 31.9    |
| M2        | 14.83 | 8.39  | 6.23  | 5.52  | 9.5     |
| M3        | 6.68  | 1.39  | 3.29  | 3.22  | 4.1     |
| M4        | 2.22  | 1.96  | 2.88  | 1.20  | 2.2     |
| M5        | 33.94 | 9.79  | 10.44 | 7.39  | 18.8    |
| M6        | 2.49  | 4.95  | 9.22  | 9.54  | 7.2     |
| M7a (VAR) | 13.30 | 5.85  | 3.52  | 4.28  | 7.8     |
| M7b (VAR) | 5.24  | 2.51  | 5.18  | 4.75  | 4.5     |

Four test set (in work set) with rolling window CV. RMSE in each test set for each model. VAR with and without seasonality.

# External validity 2

- External validity is about the stability of patterns in the data
- ► Such as trends, seasonality
- First version of this case study a year ago
- ▶ Updated more recently, now with 2018 data
- ► Keep best model of M4. Repeat exercise with training= 2000-2017, holdout=2018, see what happens

#### Prediction with best model M4 for 2018



# Main takeaways

- Forecasts use time series data to predict y for one or more time periods ahead
  - For long-horizon forecasts, trend and seasonality are the most important features
  - For short-horizon forecasts, serial correlation can be important, too
  - When using x variables to help forecast y, we need to forecast the values of x, too, and use those in forecasting y