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Multiple Time Periods Can Be Helpful

I Diff-in-diffs estimates the effect at a single point in time.
I Issue 1: Immediate effect, in one period, impact is steady.
I Most real-life situations: delayed effect, variation of impact over time

I Having a single endline time period is not enough to tell the full story.

I To estimate how an effect plays out in time, need more time periods.

I Issue 2: subjects may be treated at various points in time

I Need method(s) that generalize diff-in-diffs for multiple periods.
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Estimating Effects Using Observational Time Series

I Generalization: multiple periods
I Estimating an effect from a single time series: within subject comparisons only.
I An average effect across time for the same subject.

I we care about a single country / shop; the intervention happens at one place.

I Time series regressions
I specified in levels as well as changes.

I yt variable is measured at which t time period. Could have lags.
I ∆ denotes change: ∆yt = yt − yt−1
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Estimating Effects Using Observational Time Series

I Time series regression specified in levels:
yEt = α + βxt (1)

I α is the average y when x = 0;
I β shows how much larger y is, on average, when x is larger by one unit.
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Estimating Effects Using Observational Time Series

I Time series regression specified in terms of changes in y and changes in x :
∆yEt = α + β∆xt (2)

I α: estimates the trend: the average change in y when x doesn’t change.
I β: how much y changes, on average when x increases (or decreases), by one unit; in

addition to the trend.
I as yt changes by the trend anyway, so how much more, is the question.

I Difference: avoid estimating spurious effects due to trends and random walks
I Applied when x is binary / quantitative, same interpret.
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Estimating Effects Using Observational Time Series

I Causal effect? Yes, if variation in ∆xt is exogenous.
I time periods with different changes in x would have experienced the same change

in y , had x changed the same way for them.
I Yes, units are the time periods, as we have a single subject

I Whatever makes x change at time t should be independent of all other things that
would make y change at time t.
I Within-subject criterion: changes in x and y are for the same subject.

I A version of PTA. In time periods when the treatment status changed (∆xt 6= 0), y
would have changed the same way, had the treatment status remained the same, as
it changed in time periods when the treatment status did remain the same.
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Lags to Estimate the Time Path of Effects

I Advantage of multiple time periods: estimate the time path of effects,
I immediate effects,
I effects in the near future,
I long-run effects.

I Include appropriate lags of ∆xt .
I Application of what we covered earlier

I Causal effect condition the same: when variation in ∆x is exogenous.
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Lags to Estimate the Time Path of Effects

I With lags, we can estimate effects within the same time period (β0 below), effects
one time period later (β1),etc.

I Time series regression that can estimate effects for up to K time periods has K
lags of ∆x :

∆yEt = α + β0∆xt + β1∆xt−1 + ...+ βK∆xt−K (3)
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Lags to Estimate the Time Path of Effects

I Long-run effect on y = adding up the coefficients on all lags
I Or apply trick to get cumulative effect:

∆yEt = α + βcumul∆xt−K + δ0∆(∆xt) + ...+ δK−1∆(∆xt−(K−1)) (4)

I βcumul = β0 + β1 + ...+ βK above
I βcumul shows the total change in y within K time periods after a unit change in x ,

on average.
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Leads to Examine Pre-trends and Reverse Effects

I Another aspect is related to exogeneity of ∆xt
I impossible to assess directly
I how y would have changed if x had changed

I Instead: we can examine how y did change in the previous time period(s)
I We need to include lead terms of ∆x in the regression.
I This is, in fact, the parallel trends assumption we need here: it’s analogous to

pre-trends in diff-in-diffs regressions
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Leads to Examine Pre-trends and Reverse Effects

I Include lead terms of ∆x in the regression. With L leads:

∆yEt = α + β∆xt + γ1∆xt+1 + ...+ γL∆xt+L (5)

I The lead terms are ∆xt+1 through ∆xt+L.
I γ1 shows how y tends to change one time periods before x changes.
I γL shows how y tends to change L time periods before x changes.
I They show that because ∆yt is one time period before ∆xt+1, two time periods

before ∆xt+2, etc.
I γ1 = ...γL = 0 would show that, regardless of how x changes, y tends to change the

same way one through L time periods earlier.
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Leads to Examine Pre-trends and Reverse Effects

I Specific case of endogenous change in x – reverse causality effect: y affecting x .
I With observations from multiple time periods - capture this reverse effect.
I IF it takes time.
I Result of reverse effect: a change in x would tend to follow a change in y.
I One time period, ∆yt is associated with ∆xt+1,

I coefficient capture that reverse effect
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Leads to Examine Pre-trends and Reverse Effects

I Causal model with a single series: combine leads and lags
I The lag terms help capture delayed effects.
I The lead terms help capture differences in pre-trends and reverse effects.
I A time series regression, in differences, with K lags and L leads, has the form

∆yEt = α+ β0∆xt + β1∆x(t−1) + ...+ βK∆x(t−K) + γ1∆x(t+1) + ...+ γL∆x(t+L) (6)
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Pooled Time Series to Estimate the Effect for One Unit

I Despite the advantages of estimating effects from time series, single time series are
rarely used to estimate effects in practice.

I Time series are rarely long enough
I Even if long, are they relevant? Often, not.

I One solution: combine time series from several subjects i (cross-sectional units).
I Idea: time series of similar units are more representative than longer series of a

single unit
I Use domain knowledge to select similar units
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Pooled Time Series to Estimate the Effect for One Unit

I The simplest pooled time series regression estimates a single intercept and a single
slope.

I Most often, though, we include separate intercepts for each i .
I Doing so allows for trends to be different across i .

∆yEit = αi + β∆xit (7)

I Here β shows the average change in y , across time and units i , when x increases by
one unit.

I Conditional on i-specific trends: even if different subjects had different trends, this
would not affect our estimate.
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Pooled Time Series to Estimate the Effect for One Unit

I We had two ways to tackle serial correlation: Newey-West SE and adding lagged
yt . Here it’s the lagged yt

I Data table with pooled time series, N units, each with Ti observations.
I There is no specific, ideal N, it’s typically 5-20, depends on domain, could be more.
I Ideally, each unit has same time series, but can work with them even if not —> end

of lecture

I We can add leads and lags as before
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Import Demand and Industrial Production

I Interested in understanding how external demand affects production

I Thai industrial production and US total imports: individual time series
I Industrial production in Thailand, in logs, monthly time series
I US total imports, in logs, monthly time series

I Source: asia-industry dataset. N=243.
I Monthly data, seasonally adjusted, February 1998–April 2018.

23. Methods for Panel Data 18 / 56 Gábor Békés



Multiple periods Leads, lags Pooled TS CS: A1 Panel models CS: B1 Panel FD CS: B2 B3 Panel closing

Thai industrial production and US total imports

I Question: how the import demand of the USA affects industrial production in
Thailand.

I Causal question, but no explicit intervention.
I what happens in a mid-sized open economy when something changes externally -

major trading partner.
I Mechanism: global supply chains, Thailand sells to USA directly, and indirectly

(often through China).
I We care about coefficient not just if there is an effect – policy
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Thai industrial production and US total imports

I Thai industrial production and US total imports: individual time series
I Industrial production in Thailand, in logs, monthly time series
I US total imports, in logs, monthly time series

I Source: World Bank WDI – asia-industry dataset. N=243.
I Monthly data, seasonally adjusted, February 1998–April 2018.
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Thai industrial production and US total imports

Thailand IP, in logs, Feb 1998–April 2018, monthly US total imports, in logs, monthly
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Thai industrial production and US total imports [REV]

I There is a trend, an extreme event (2009 great crisis), care about relative change
I First difference. Log values.
I Lags=4 -a one-time change in U.S. imports can have an effect on how Thai

industrial production changes through four months.
I No leads - expect no reverse causality
I TS regression estimate the effect of U.S. import demand on Thai industrial

production (IP):

∆(ln(ipTHA)t) = α + β0∆(ln(impUSA)t) + β1∆(ln(impUSA)t−1) + ...

+ β4∆(ln(impUSA)t−4) + φ∆(ln(ipTHA)t−1)
(8)
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Import Demand and Industrial Production

I US imports and industrial production in Thailand and three other countries
I Dependent variable is change of log industrial production in each country;
I Explanatory variable cumulative effect of the change in log US imports, four lags.
I Add lagged dependent variable to capture serial correlation
I Monthly time series, seasonally adjusted, February 1998–April 2018. N=243 - for

all units
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US imports and IP in Thailand + 3 other countries

(1) (2) (3) (4) (5)
Variables Thailand Malaysia Philippines Singapore Pooled

USA imports log change, cumulative coeff. 0.400* 0.358** 0.556** 0.367 0.437**
(0.190) (0.112) (0.185) (0.289) (0.103)

Industrial production log change, lag -0.119 -0.460** -0.242** -0.376** -0.315**
(0.065) (0.059) (0.064) (0.061) (0.031)

Malaysia 0.000
(0.004)

Philippines -0.001
(0.004)

Singapore 0.002
(0.004)

Constant 0.002 0.004* 0.001 0.005 0.003
(0.003) (0.002) (0.003) (0.004) (0.003)

Observations 238 238 238 238 952
R-squared 0.070 0.231 0.140 0.183 0.123

TS regression; dep.var= change of log industrial production in country; log US imports change: 4 lags.
Monthly, SA, Feb 1998–April 2018. N=243. Standard error estimates in parentheses. ** p <0.01, * p <0.05.

23. Methods for Panel Data 24 / 56 Gábor Békés



Multiple periods Leads, lags Pooled TS CS: A1 Panel models CS: B1 Panel FD CS: B2 B3 Panel closing

US imports and IP in Thailand + 3 other countries

I Estimate is 0.44, 95% confidence interval is [0.24,0.64].
I Causality: we have good reasons to take estimate as causal effect

I First difference takes care of level, trend.
I Unlikely reverse causality (but may add leads)

I What can go wrong?
I A confounder affecting the change in output and demand
I Examples?
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Panel Regression

I Pooled time series from a few subjects to estimate the expected effect of a causal
variable x on outcome y . Policy question was for one of the subjects.

I Change of question: the average effect of x on y across many subjects.
I Same kind of question to diff-in-diffs, but multiple periods
I So we’ll have: N units, over T periods

I Typically N is large, T is relatively small

I Will look at different models, approaches
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Panel Regression with Fixed Effects

I First model is the fixed-effects regression (FE regression).
I In FE regressions we have y and x (in levels), panel (xt) data
I Fixed effects are separate intercepts for different cross-sectional units.
I We look for average relationship
I The simplest linear panel regression with cross-section fixed effects:

yEit = αi + βxit (9)

I The fixed effects are denoted by αi .
I Intercept varies for different cross-sectional units.
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Panel Regression with Fixed Effects

I Why do we include the fixed effects?
I Separate intercepts for each xsec unit instead of a common intercept?

I IF subjects tend to have higher y on average due to some unobserved confounder
that affects x or y in the same way at all times.

I THEN, fixed effects help avoid/mitigate bias.
I Including fixed effects = conditioning on all variables that don’t change through

time.

I = Fixed effects condition on time invariant confounders

I Model fit: within R-squared - based on the transformed model, ie comparing mean
differenced y and x
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Panel Regression with Fixed Effects

I In the FE regression, β shows how much larger y is, on average, compared to its
mean within the cross-sectional unit, where and when x is higher by one unit
compared to its mean within the cross-sectional unit.

I That’s a within-subject comparison, and it’s not affected by whether one subject
has larger average y .

I That’s why it’s not affected by whether an unobserved confounder affects the
average y values of the different subjects.
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Aggregate Trend in panel data

I Aggregate trend is a global trend that affects all unit the same way
I such as global business cycle
I varies across time periods but not units
I With xt panel data, we can can condition on an aggregate trend, whatever form it

has, including nonlinear trends or even ups and downs.
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Aggregate Trend in panel data

I To condition on aggregate trends, we need to include time dummies: binary
variables for each time period.

I Sometimes called time fixed effects

yEit = αi + θt + βxit (10)

I β shows how much larger y is, on average, compared to its mean within the
cross-sectional units and its mean within the time period, where and when x is
higher by one unit compared to its mean within the cross-sectional unit and its
mean within the time period.
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Clustered Standard Errors

I Instead of heteroskedasticity robust SE (cross-section) or Newey West SE (time
series), we’ll use a new type called clustered standard error.

I Standard errors clustered at the level of cross-sectional units
I Clustered standard errors are robust in two aspects.

I They are fine in the presence of any kind of serial correlation, and they are also fine
without any serial correlation.

I They are also fine in the presence of heteroskedasticity as well as homoskedasticity
I Thus, with panel models, we always use clustered SE.

I .... we need a not small (>30) number of units
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Immunization against Measles and Saving Children

I Immunization against measles and child survival rate in seven regions of the world
I Immunization rate
I Child survival rate
I Immunization rate: percentage of children of age 12 to 23 months who received

vaccination against measles.
I Child survival rate: 100% minus the percentage of children of age 0 to 5 years who

died in the given year.

I Source: worldbank-immunization dataset.
I Annual data, 1998–2017, aggregated to seven geographical regions.
I Many, but not all countries, N=172
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Immunization against measles and child survival rate in seven regions of the
world

Immunization rate Child survival rate
Source: worldbank-immunization dataset. Annual data, 1998–2017, aggregated to seven geographical regions.
N=140.
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The effect of measles immunization on child survival. FE regressions

I The effect of measles immunization on child survival.
I FE regressions
I Within R-squared presented for FE regressions.
I Source: worldbank-immunization dataset;
I balanced yearly panel, years 1998–2017 in 172 countries.
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The effect of measles immunization on child survival. FE regressions

(1) (2)
Variables Survival rate Survival rate

Immunization rate 0.077** 0.038**
(0.010) (0.011)

ln GDP per capita 1.593**
(0.399)

ln population 12.049**
(1.648)

Year dummies Yes Yes
Observations 3,440 3,440
R-squared 0.717 0.848
Number of countries 172 172

Within R-squared presented for FE regressions. Appropriate standard error estimates in parentheses. ** p
<0.01, * p <0.05. Source: worldbank-immunization dataset; balanced yearly panel, years 1998–2017 in
172 countries.

23. Methods for Panel Data 36 / 56 Gábor Békés



Multiple periods Leads, lags Pooled TS CS: A1 Panel models CS: B1 Panel FD CS: B2 B3 Panel closing

The effect of measles immunization on child survival. FE regressions

I The slope parameter estimate on immunization is 0.077 without conditioning on
any confounders

I drops to 0.038 when we condition on GDP per capita and population
I When we compare years with the same GDP and population, in years

when the immunization rate is higher by 10 percentage points than its
average rate within a country, child survival tends to be 0.38 percentage
points higher than its average within the country, conditional on aggregate
trends in the world.

I We can expect it to be 0.16 to 0.6 percentage points higher in the general pattern
represented by our data.

I 100 percent - 3.8 percent, but not a realistic improvement, 10% makes more sense
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The effect of measles immunization on child survival.

FE regressions with different Simple and Clustered SE estimates.

(1) (2)
Variables Clustered SE Simple SE

Immunization rate 0.038** 0.038**
(0.011) (0.002)

ln GDP per capita 1.593** 1.593**
(0.399) (0.071)

ln population 12.049** 12.049**
(1.648) (0.227)

Observations 3,440 3,440
R-squared 0.848 0.848
Number of countries 172 172

Within R-squared presented for FE regressions. Standard error estimates in parentheses. ** p<0.01, * p<0.05.
Source: worldbank-immunization dataset; balanced yearly panel, years 1998–2017 in 172 countries.
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Panel Regression in First Differences

I We can also specify xt panel regressions in changes.
I Different approach, alternative to FE model in modeling
I panel regression in first differences or FD regression.
I FD = changes -> ∆yit = yit − yi(t−1).
I FD panel regression with a common intercept across all i .

∆yEit = α + β∆xit (11)

I Looks like a pooled a cross-section with first difference.
I But here, we have a single intercept, α
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Panel Regression in First Differences

I β shows the difference in the average change of y for units that experience a
change in x during the same period.

I Comparing different cross-sectional units for the same time, or comparing different
time periods for the same unit, β shows how much more y changes, on average,
where and when x increases by one unit.
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Lags and Leads in FD Panel Regressions

I Often, we want to estimate not only immediate effects but longer run effects, too.
I Multiple time periods allow us to capture the time path of the effects by including

lags of ∆x in the regression.
I Same idea as with pooled time series

I Regression in FD with K lags:

∆yEit = α + β0∆xit + β1∆xi(t−1) + ...+ βK∆xi(t−K) (12)

I cumulative effect or long-run effect of the change of x = sum of the immediate
effect and all lagged effects.
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Lags and Leads in FD Panel Regressions

I We can also add lead terms to an FD regression to examine pre-trends and capture
reverse effects, just like with single time series.
I Better than inspecting pre-trends, but PTA remains an assumption.

I An FD panel regression with K lags and L leads looks like this:

∆yEit = α+β0∆xit +β1∆xi(t−1)+...+βK∆xi(t−K)+γ1∆xi(t+1)+...+γL∆xi(t+L) (13)

I The γ coefficients on the lead terms are zero if, prior to time periods when x may
change, y tends to change the same way regardless of whether and how much x
actually changes.
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Aggregate Trend in FD Models

I As for FE models, we can add time dummies to capture non-linear trend
I FD regression with K lags and time dummies (time FE) is the following:

∆yEit = θt + β0∆xit + β1∆xi(t−1) + ...+ βK∆xi(t−K) (14)

I θt = coefficients of the time dummies
I = time-specific intercepts = time fixed effects.
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Individual Trends in FD Models

I Time dummies capture an aggregate trend in a completely flexible way
I Cross-sectional units in the data may have their own trends, too.

I Here we don’t have the opportunity to estimate flexible trends, because we have only
one observation for each time period for each unit.

I Can capture individual linear trends: allow the intercept to be different across
cross-sectional units.
I trend = average change per unit
I as with pooled time series
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Individual Trends in FD Models

I FD regression with K lags, time dummies, and individual-specific intercepts:
∆yEit = αi + θt + β0∆xit + β1∆xi(t−1) + ...+ βK∆xi(t−K) (15)

I αi : the average change in y in cross-sectional unit i across all time periods
I measured as a deviation from the flexibly estimated aggregate trend θt ,
I and when x does not change (and didn’t change for the past K time periods).
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Immunization against Measles and Saving Children

I The immediate and lagged effect of measles immunization on child survival
I FD panel regression estimates
I Cumulative effect estimates calculated via transformation.
I Clustered standard error
I balanced yearly panel, years 1998–2017 in 172 countries.
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(1) (2) (3) (4)
Variables ∆surv ∆surv ∆surv ∆surv

∆imm 0.009** 0.010**
(0.002) (0.002)

∆imm lag 1 0.010**
(0.002)

∆imm lag 2 0.011**
(0.002)

∆imm lag 3 0.009**
(0.002)

∆imm lag 4 0.007**
(0.002)

∆imm lag 5 0.006**
(0.002)

∆imm lead 1 0.008**
(0.002)

∆imm lead 2 0.007**
(0.002)

∆imm lead 3 0.005
(0.003)

∆imm cumul 0.053** 0.054**
(0.010) (0.008)

Constant 0.188** 0.136** 0.136** 0.125**
(0.024) (0.018) (0.018) (0.018)

R-squared 0.013 0.078 0.078 0.093
Observations 3,268 2,408 2,408 1,892
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Immunization against Measles and Saving Children

I The effect of measles immunization on child survival. FD panel regression
estimates with year dummies, confounders, and country-specific trends

I FD panel regressions with 5 lags of all right-hand-side variables.
I Cumulative coefficient on the change of immunization over the 5 lags.
I Clustered standard error estimates in parentheses.

I Adding leads - 3 periods
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The effect of measles immunization on child survival

The effect of measles immunization on child survival - FD model estimates
(1) (2) (3)

Variables ∆surv ∆surv ∆surv

∆imm cumulative , 0.052** 0.030** 0.011**
(0.010) (0.009) (0.003)

Year dummies Yes Yes Yes
Confounder variables No Yes Yes
Country-specific trends No No Yes

Observations 2,408 2,408 2,408
R-squared 0.088 0.212 0.331

FD panel regressions with 5 lags of all right-hand-side variables. Confounders: GDP per cap, population.
Cumulative coefficient w 5 lags. Clustered SE estimates in parentheses. ** p<0.01, * p<0.05. Source:
worldbank-immunization dataset; balanced yearly panel, years 1998–2017 in 172 countries.
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The effect of measles immunization on child survival

I Baseline result 0.05
I Year dummies + confounders: 0.030 - confounders clearly important
I Adding individual linear time trend: 0.011 - small but precisely measured

I Causal effect?

I We can’t be certain. It’s observational data.

I We did a great deal of efforts to condition on all kinds of confounders.
I FD model with lags - takes out level differences and accounts for dynamics
I Key confounders added: GDP per capita and population + individual linear trends
I PTA - make a very good effort: Adding leads or confounders like population, gdp

makes no difference.

I Good approximation to what the true effect: A 10 percent increase in the
immunization rate leads to a 0.1 percentage point increase in the child survival
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Panel Regressions and Causality

I FE regressions and FD regressions can estimate the effect of x on y without the
bias due to confounders that don’t change over time.

I Confounders that change through time need to be observed and included in the FE
or FD regression.

I Conditioning on individual trends is feasible with FD regressions
I Can do something similar in FE, but (even more) complicated

I Panel model allow us conditioning on a great deal of confounding factors
I But, as always, there can be omitted variables - so never certain.
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First Differences or Fixed Effects?

I Have seen many models, which one to choose?
I FE and FD regressions are similar because both condition on confounders that

affect the level of y and x and don’t change through time.
I FE regressions do that by comparing values of y and x to their cross-sectional means.
I FD regressions do something similar by comparing values of y and x to their values

in the previous time period.

I Confounders that affect the change in y or x still matter for both FE and FD
regressions, whether the confounders themselves change through time or not
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First Differences or Fixed Effects?

I FD main advantage 1: capture serial correlation by first differencing
I important if time series properties key

I FD main advantage 2: capture transparent dynamics
I As long as we keep adding lags. But that means smaller and smaller panel for

estimation.
I FD takes care of linear trend automatically, but as we add anyway, no big deal

I FD main advantage 3: can easily capture individual linear trends
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First Differences or Fixed Effects?

I FE main advantage 1: simple method of estimating longer run effects, easier to
use
I estimate of the average of short-term and long term effects.
I When the long-term effects kick in fast, that’s a good approximation of the

long-term effects themselves

I FE main advantage 2: Works when missing values in panel (see next bit)

I In many cases, both FD and FE can work.
I Key consideration is if time path to effect matters
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Dealing with Unbalanced Panels

I Missing observations: missing at random or not
I If missing at random - okay to keep. Maybe FE models will be better.
I If not

I Reduce T - focus only on more recent years when coverage is high
I Reduce N - drop unit (countries) where coverage is low

I Sample design (filtering out observation) means we have a different sample, and
may not be representative to what we started with.

I Many analytical choice, but must make notes
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Summary: Panel Regression

I Data with multiple time periods can help uncover short- and long-run effects and
examine pretrends.

I When interested in the effects on a single cross-sectional unit, we may analyze a
single time series or pool several time series of similar units.

I With panel data having multiple time periods, several modeling options
I use an FD regression to uncover the development of the effect over time, and an

FD or an FE regression to uncover the long-run effect
I Watch out for interpretation - hard

I Overall big picture: using panel data methods can take us much closer to a causal
interpretation.
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