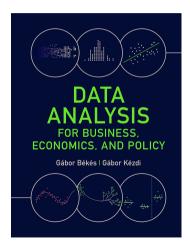
24. Appropriate Control Groups for Panel Data

Gábor Békés

2020

Slideshow for the Békés-Kézdi Data Analysis textbook



- ► Cambridge University Press, 2021
- gabors-data-analysis.com
 - Download all data and code: gabors-data-analysis.com/dataand-code/
- ► This slideshow is for Chapter 24

When and why to select a control group in xt panel data?

- Consider a binary intervention
 - ► Treated observations (units, time periods)
 - Untreated observations (units, time periods
- With xt panel data we can use diff-in-diffs or FD or FE panel regressions to estimate the effect
- So far we used all observations in the data
- ▶ That meant using all untreated observations to estimate the counterfactual

When and why to select a control group in xt panel data?

- ▶ But sometimes it makes sense to select a subset of the observations to estimate the counterfactual
 - ► Example: using a diff-in-diffs strategy the parallel trends assumption is more likely to hold for some units than for others
- In such cases we can select a more appropriate control group
- There are many ways to do that that are applicable in may situations
- ▶ We consider two specific methods to be used in specific situations
 - ▶ The synthetic control method in comparative case studies
 - Constructing a control group with pseudo-interventions in event studies

Comparative case studies

- ► An event happened
 - ► Earthquake in Haiti in 2010
 - Germany reunified in 1990
 - California increased taxes on and restricted use of tobacco in 1988
- ► What was it's effect?
 - ▶ The effect of the earthquake on GDP in Haiti after 2010
 - ▶ The effect of the German reunification on the GDP of the Western part after 1990
 - ► The effect of the California tobacco taxes and restrictions on tobacco use in California after 1988

Comparative case studies

- With appropriate data, it's straightforward to see what happened to the variable of interest after the intervention
 - ▶ What the Haiti GDP was after 2010
 - ▶ What the West German GDP was after 1990
 - What tobacco use in California was after 1988
- ▶ The big question: How to estimate the counterfactual?
 - ▶ What the Haiti GDP would have been after 2010 without the earthquake
 - ▶ What the West German GDP would have been after 1990 without the reunification
 - ► What tobacco use would have been in California after 1988 without the taxes and

restrictions

The synthetic control method

- ▶ A method to estimate the effect in a comparative case study
 - One subject one intervention (treated subject)
- By constructing a counterfactual
- Data is xt panel
 - Outcome variable y
 - ► Time series of *y* and other variables for treated subject before and after the intervention
 - ▶ Time series of same variables for several untreated subjects
 - ► These untreated subjects are called the donors
 - ► The set of untreated subjects is called the donor pool

The synthetic control method

- ► The method creates a single control subject
- ► From the donor pool of untreated subjects
- ► It's a synthetic control subject because it is not one of the actual untreated subjects
- ► Instead, it's a subject with a weighted average of the variables of several untreated subjects
- In essence, the method creates the synthetic control
 - ► As a weighed average of the subjects in the donor pool
 - By assigning weights to each subject in the donor pool
 - Making sure that the pre-intervention y and selected other variables are similar

More on the synthetic control algorithm

- ► The goal of the algorithm is to assign weights to each subject in the donor pool
 - ► The weights add up to one
 - Zero weights for some donors are OK, it just means that that subject won't add to the synthetic control subject
 - ▶ In fact most subjects in the donor pool tend to end up with zero weight
- The result is a set of weights assigned to each subject in the donor pool
 - ► For example, 0 for donor one, 0.1 for donor two, 0 for donor three, 0.5 for donor four, 0.4 for donor five, 0 for donor six
- ▶ The synthetic control subject is that weighted average

More on the synthetic control algorithm

- Select variables that should be similar for treated subject and synthetic control subject
 - Pre-intervention values of y. Typically select values of y in specific time periods
 - ▶ Potential confounders that don't change with time
 - ▶ Pre-intervention average values of potential confounders that change with time
- ► Intuitively, a search algorithm
 - Try out all possible weighted averages of the donors
 - ► Select the one for which the selected variables are the closest to their values for the treated subject
- ▶ A lot simpler minimum-distance procedure in practice

The role of the analyst in the synthetic control method

► The event is given

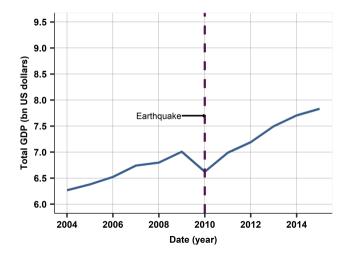
- ► Need to choose the outcome(s) of interest
- ► Need to choose the donor pool
 - ► Data availability may be a constraint
- ▶ Need to choose the variables that should be similar between the treated subject and the synthetic control subject
 - ▶ That includes when those variables should be measured
 - For example, y in what pre-intervention time periods
- ► The rest is done by the algorithm

Estimating the effect of the 2010 Haiti earthquake on GDP

- ► A severe earthquake hit Haiti in January 2010
- ▶ What was the effect of this earthquake on Haitian GDP in 2010 and subsequent years?
 - ► Total GDP

- ► Constant 2010 USD prices
- ► This is a comparative case study
 - An event happened in one country
 - What was the effect of this event on that country
 - Need counterfactual
- ► Case study based on Best and Burke (2019)
 - Use same data sources
 - ▶ haiti-earthquake dataset
 - ► Use their approach in selecting the variables

Total GDP in Haiti

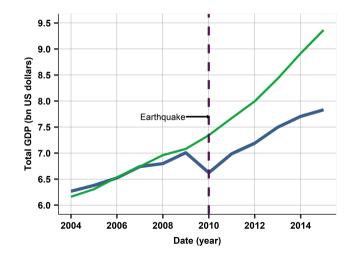


The synthetic control for Haiti

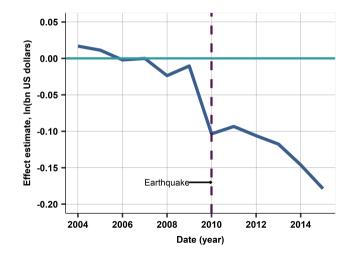
Donor pool

- ► Countries with less than USD 4000 GDP per capita (2009 PPP USD)
- ► Appropriate data available in 2004 through 2015
- ▶ 21 countries altogether (plus Haiti)
- Variables
 - ► Land size and pre-intervention (2004-9) average values of population, GDP per capita, imports, exports, consumption, gross capital formation, inflation
 - ► Total GDP in 2005, 2007, 2009
- ► The synthetic control subject
 - ▶ 5 countries with nonzero weight
 - ▶ Burundi 23%, Cameroon 21%, Moldova 9%, Togo 47%, Liberia 0.2%

Total GDP in Haiti and in the synthetic control country



Log difference of total GDP in Haiti and the synthetic control country



Answer question of case study

- ▶ Severe and permanent negative effect of the earthquake on Haitian total GDP
 - ► Total GDP dropped by 10% in 2010
 - ▶ Remained at least 10% below what it would have been in subsequent years
 - May have dropped even more after three years

Answer question of case study

Introduction

- ► How much should we believe these results?
- ► Found reasonably good synthetic control country
 - Likely imperfect synthetic control
 - ► Total GDP trended downwards in Haiti compared to it before 2010
 - ▶ Although that was nothing compared to the drop in 2010
 - And donor pool is limited to 21 countries
 - There are just so many countries...

Maybe magnitude of effect is smaller

But the result of a permanent negative effect is likely real

Event studies setup

- ► Many subjects observed multiple times (xt panel data)
- ► Binary intervention (treatment)
- ▶ Some subjects remain untreated throughout the time we observe them
- Other subjects become treated, at different time periods
- Question is the average effect of the intervention
 - ► Focus on ATET: average effect on subjects that become treated
- ▶ This setup is included in the more general setup of FE and FD xt panel regressions
 - ▶ Redefine the time structure more intuitive and transparent
 - More explicit about treated and control units

Event studies

- ▶ Event studies re-define time around the time of the intervention
 - This re-defined time is called event time
- So event time is defined only for subjects that become treated at one point
 - Pre-intervention event time periods are negative
 - ▶ -1 for the time period before the intervention
 - ▶ -2 for two time periods before, etc.
 - ▶ Post-intervention event time periods are positive
 - ▶ 1 for the time period after the intervention
 - 2 for two time periods after, etc.
 - ▶ The intervention may take place within one time period, which has event time zero

Event studies

- ► Look at this setup in two steps
- ► First, consider treated subjects in a first difference model, comparing treated and untreated differences
- Second, combine with idea seen before: find a better control group.

- \triangleright xt panel data, observations indexed by i and t
- For now restrict attention to subjects that became treated at one point in time
- Outcome is y_{it}

- Binary indicators D_{is} one if the event time period is s, zero otherwise
 - s is event time: it may be negative or positive or zero
- We will look at a simple example, see what event time implies, and how it helps get a more realistic ATET.

► This is an FD panel regression in event time

$$\Delta y_{it}^{E} = \alpha + \beta_1 D_{i1} + \beta_2 D_{i2} + \beta_3 D_{i3}$$
 (1)

Interpreting the coefficients

- \triangleright α is the average change in y outside the event time window [1,3]
 - before the intervention AND 4 or more time periods after the intervention
- \triangleright β_{i1} is how much more y tends to change 1 time period after the intervention (how much more compared to α); β_{i2} and β_{i3} analogously
- ▶ Sum = cumulative coefficient: $\beta_{cumul} = \beta_1 + \beta_2 + \beta_3$ shows how y changes, on average, within three time periods after the intervention
 - Compared to how y tends to change outside the [1,3] window of event time

$$\Delta y_{it}^{E} = \alpha + \beta_1 D_{i1} + \beta_2 D_{i2} + \beta_3 D_{i3}$$
 (2)

Do we estimate an ATET?

- ls β_{cumul} a good estimate of the cumulative effect of the intervention?
- ightharpoonup Only if α is a good estimate of the counterfactual
 - ▶ Without the intervention, *y* would have changed the way it did outside the [1,3] event time window among treated subjects
- ► There is no control group here
- ► The counterfactual is how *y* changed before the intervention (and after the last post-intervention period included in the regression)

- ▶ With an event study regression that includes treated subjects only
- ► We don't have a control group: The effect is estimated assuming that what happened before the intervention is a good counterfactual
- Can we do more?

- ▶ We can add pre-intervention binary indicators
 - Such as $D_{i(-1)}$ or D_{i0} for the time period of the intervention only, to take care of reverse causality or anticipation effects
 - ▶ But that would still not give us a control group
- ► To compare to a control group we need to define event time for subjects that were never treated
 - ► That's tricky but doable = second step.

Estimating the impact of replacing football team managers

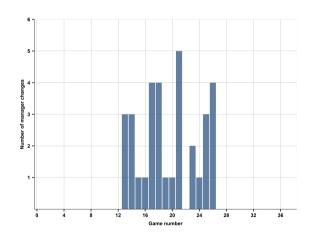
- ▶ What is the effect of replacing the manager of a football (soccer) team on team performance?
 - Professional football
 - Managers are coaches with broad responsibility
 - ▶ The situation we look at is replacing the manager within the season
 - Typically, that happens after poor performance
- Outcome is points per game
 - ▶ 0 for loss, 1 for draw, 3 for win
- Intervention is replacing the manager
 - ▶ Happens between games, there is no game with event time zero

Football Data

- ▶ football dataset
- ► English Premier League, 11 seasons, 20 teams
- Every team plays with every other team twice in a season: 38 games
- ▶ We denote time within season by game number, 1 through 38.
- ▶ 8360 observations in total $(20 \times 38 \times 11)$
- Outcome is points per game
 - ▶ 0 for loss, 1 for draw, 3 for win
 - ► A little less than a quarter of the games results in draw (1pt)
 - ► The rest result in one team winning (average thus 1.5pt)
 - Overall average is 1.38

Manager replacements

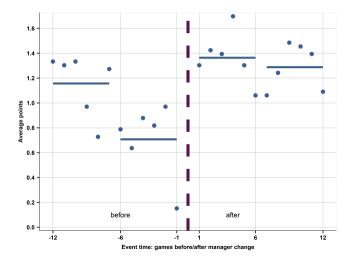
- ▶ 94 within-season manager changes during these 11 seasons
- ► We require 12 games played before and after the manager change
- restrict data to changes happened after 12 and before 27 game number.
- ▶ 33 manager changes analyzed



Average outcomes before and after the intervention

- ▶ 33 interventions analyzed here
 - ▶ 33 teams replaced their managers within one of the 11 seasons in the data
 - ▶ AND replacement happened between game numbers 12 and 27
- Event time positive after replacement, negative before replacement
- ▶ Outcome (points) 12 weeks before intervention and 12 weeks after intervention
- Calculated average points for each event time across those 33 teams (24 such averages)
- ► Also calculated averages across six event time periods (four such averages)

Average points before and after manager replacement



Interpreting the results

- ▶ These results are for the 33 teams that replaced their manager within-season
- ► They performed below average already 7-12 before the intervention (1.16 here compared to 1.38 overall average)
- ► Then their performance worsened significantly, to 0.71 points on average for 1-6 games before intervention
- ▶ The game result before intervention was especially poor, average very close to zero
- ► After management replacement outcome increases substantially, to 1.38 1-6 games after
 - By coincidence, this is the overall average outcome in the League
- ▶ This increase looks permanent, persisting to 7-12 games after the intervention

Is this the effect?

- ► We see a large and permanent increase of team performance after the manager is replaced
 - ► After below-average and then worsening performance
 - ► An increase to the overall league average
 - ▶ Persisting to at least 12 games after replacement
- ▶ Is this the effect of the manager replacement?
- It depends on the counterfactual
 - ▶ Is the very low before-intervention outcome the counterfactual?
 - ▶ In other words, would the very bad performance have continued had the manager not been replaced?

Mean reversion

- ▶ When we examine a sequence of random values,
- ▶ a series of unusually large values are followed by a smaller value
 - closer to the mean
- or, a series of unusually small values are followed by a larger value
 - closer to the mean
- Importantly, we can have this even without any intervention.
- ▶ Here: after a run of bad luck, things may go back to normal
- without any intervention, such as replacing the manager

What's the right counterfactual?

- ► How can we tell whether, or how much, of the improved team performance after the intervention is
 - Due to replacing the manager
 - Or due to other factors that would lead to mean reversion?
- ▶ We can try to find a control group that we can use to estimate the counterfactual
 - ▶ This is the second step of the event study approach

Selecting a control group for event studies

- Selecting a control group of untreated subjects is necessary to estimate the counterfactual
 - ▶ In other words, to uncover what would have happened to the treated subjects without the treatment
- ▶ In event studies, we define the control group by defining pseudo-interventions
 - Pseudo-interventions are event time periods, or instances between event time periods, for untreated subjects
 - ► That are preceded by changes in outcomes that are similar, on average, to pre-intervention changes in outcomes among treated subjects

Estimating the impact of replacing football team managers

- ► We found that team performance increases substantially after the manager is replaced during the season
 - ▶ But that may not show the effect we are after
 - Mean reversion may play a role here
- Need a control group to get a better estimate of the counterfactual
- ► Let's create such a control group
 - ▶ Identify subjects (teams and time periods) that can constitute a control group
 - ▶ Define pseudo-interventions for them
 - ► Compare post-intervention outcomes between treated and control

Defining a good control group

- ► A control group should consist of teams playing 24 games within the season (24-game spells)
 - ► That's what the treatment group consists of
 - ▶ With 12 games played before the intervention, 12 games played after
- ► A good control group is similar to the treatment group in pre-treatment performance
 - Somewhat below-average performance (1.16) in games the first 6 games (event time window [-12, -7])
 - Substantial drop in performance (to 0.71) in the net 6 games (event time window [-6,-1])
 - ▶ An especially low performance (0.15) on game 12 (event time -1)
- ▶ Pseudo intervention is between games 12 and 13

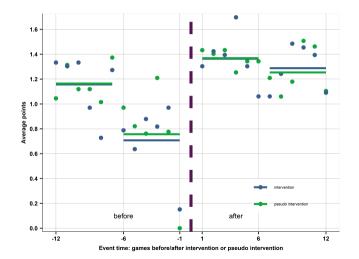
Finding a control group

- ▶ But how to find such subjects (24-game spells)?
- ► Look at all 24-game spells in the data (exclude when manager was replaced)
- ▶ Apply criteria that makes the first 12 game outcomes similar to the pre-treatment outcomes in the treatment group
- The following criteria make sure the patterns are similar
 - 1. Average points in first 6 games was 0.83 to 1.33
 - 2. Average points in next 6 games was 0.17 to 1.33
 - 3. A loss at game 12 (0 point)
- ▶ There are 132 such 24-game spells in the data
- ▶ Overlap randomly select. Result is 67 sets of 24-game spells

Finding a control group

- ► We have 33 treated and 67 control teams
- ► Each with outcomes for 24 games
- ▶ The first 12 game (event time window [-12, -1]) outcomes are similar across the treated and control teams, on average
- ▶ After the 12th game manager is replaced in treatment group
- ▶ Pseudo-intervention is defined to take place after game 12 in the control group
- ▶ And we look at what happens on games 13-14
 - ► This is event time window [1, 12]

Average points before and after manager change and pseudo-intervention



Interpreting the results

- ▶ Blue dots and lines show the 33 treated teams that replaced their manager within-season
- Green dots and lines show the 67 control teams
- ► Their pre-intervention performance is very similar
 - By design; that's how the control group was selected
- ▶ After the intervention their performance is very similar
 - This is the key result of the exercise

Interpreting the results

- ▶ Teams that experienced bad performance similar to the treatment group
 - but didn't replace their managers
- Experienced a similar increase in performance
 - than teams that did replace their manager

Regression estimation

- ► The same results estimated in a regression
 - Aggregated the observations to 6-week event time windows
 - Average points in event time window [-12, -7], [-6, -1], [1, 6, [7, 12]
 - Then take first differences
 - Number of observations is 300: 33×3 in the treatment group, 67×3 in the control group
 - ► The regression replicates what we see on graph (those 6-game average lines)
 - Except it's in first differences to focus on changes between those lines
 - ▶ So coeff estimates are direct estimates of the effect (+ we get SEs)

$$\Delta y^E = \beta_0 + \beta_1 post_{1-6} + \beta_2 post_{7-12} + \beta_3 treat + \beta_4 treat \times post_{1-6} + \beta_5 treat \times post_{7-12}$$
(2)

Regression estimation

$$\Delta y^{E} = \beta_0 + \beta_1 post_{1-6} + \beta_2 post_{7-12} + \beta_3 treat + \beta_4 treat \times post_{1-6} + \beta_5 treat \times post_{7-12}$$
(4)

- ightharpoonup post₁₋₆ is a binary indicator for event time window [1, 6]
- ightharpoonup post₇₋₁₂ is a binary indicator for event time window [7 12]
- treat is a binary indicator for the treatment group

Interpreting the regression coefficients

$$\Delta y^{E} = \beta_0 + \beta_1 post_{1-6} + \beta_2 post_{7-12} + \beta_3 treat + \beta_4 treat \times post_{1-6} + \beta_5 treat \times post_{7-12}$$
(5)

- β_0 shows the average change in points in the reference time period: from event time window [-12, -7] to event time window [-6, -1], for the control group
- \triangleright β_1 shows the average change in points from event time window [-6, -1] to event time window [1, 6], compared to the change in the reference time period (captured by β_0), for the control group
- \triangleright β_2 shows the average change in points from event time [1,6] to [7,12], again compared to the change in the reference time period, for the control group

Interpreting the regression coefficients

$$\Delta y^{E} = \beta_0 + \beta_1 post_{1-6} + \beta_2 post_{7-12} + \beta_3 treat + \beta_4 treat \times post_{1-6} + \beta_5 treat \times post_{7-12}$$
(6)

- \triangleright β_3 shows the treatment-control difference in the change in the reference time period (from [-12, -7] 7-12 to [-6, -1])
- ▶ If we selected the control group well, β_3 should be close to zero.
 - Because we want the control group to have the same pre-treatment changes in the outcome

Interpreting the regression coefficients

$$\Delta y^{E} = \beta_0 + \beta_1 post_{1-6} + \beta_2 post_{7-12} + \beta_3 treat + \beta_4 treat \times post_{1-6} + \beta_5 treat \times post_{7-12}$$
(7)

- \triangleright β_4 and β_5 are the effect estimates
- \triangleright β_4 shows treatment-control difference in the change right after the intervention or pseudo-intervention, from the average of event time window [-6, -1] to [1, 6]
- \triangleright β_5 shows treatment-control difference in the subsequent change, from the average of event time window [1,6] to [7,12]

Regression results

- ► Column (3) in the following table shows the coefficient estimates for the regression
- ► Columns (1) and (2) are analogous regressions separately for the treatment group and the control group
 - ▶ Interpreting the coefficient estimates of regressions (1) and (2) is a good exercise
 - So is showing the equivalence of some of those estimates to the estimates in column (3)

Regression results

	(1)	(2)	(3)
Variables	treatment	control	treatment + control
$post_{1-6}$	1.11**	1.06**	1.06**
	(0.19)	(0.09)	(0.09)
$post_{7-12}$	0.37*	0.34**	0.34**
	(0.16)	(0.09)	(0.09)
treated			-0.00
			(0.10)
$treated imes post_{1-6}$			0.04
			(0.20)
$treated imes post_{7-12}$			0.04
			(0.18)
Constant	-0.45**	-0.45**	-0.45**
	(0.10)	(0.03)	(0.03)

Interpreting the results

- ► The regression coefficients show the same as the figure
- ► Coefficient estimate on treated is zero as we wanted
- ► The effect estimates are very close to zero
 - ► The improvement from before to after the intervention (or pseudo-intervention) is the same in the two groups, on average
 - So is the subsequent change

Conclusion of case study

- ▶ Is the effect zero then?
- Yes if the control group's performance after the pseudo intervention is a good counterfactual
 - Teams that replaced their manager
 - Would have performed as well as the control teams
 - Even if they hadn't replaced their manager
- ► Recall: we need exogenous variation in the causal variable to have a good effect estimate
 - ▶ Potential outcomes should be independent of treatment
 - ► Here: which team replaces their managers after a similar trajectory of bad outcomes through 12 games should be independent of how they would perform later

Conclusion of case study

- Some of the variation may be exogenous indeed
 - ► To replace a manager there has to be available managers to take their places
 - Decisions to replace a manager may be in part arbitrary
- ▶ But some of the variation may be endogenous
 - ▶ Some teams may have performed badly for reasons other than the manager
 - and they may have remedied those causes
- ▶ So, perhaps, the effect is not zero after all
- But it's likely smaller than what we would identify by looking at the treated teams only!

Main takeaway

- ▶ When estimating the effect of an intervention using xt panel data
 - ▶ It is sometimes better to select a subset of all non-treated observations to serve as a control group
- ► To estimate the effect of an intervention on a single subject
 - We can estimate the counterfactual using the synthetic control method
- With an intervention on affecting many subjects at different times
 - We can carry out an event study
 - ▶ With the help of a control group of comparable pseudo-interventions