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Motivation

I Interested in the pattern of association between life expectancy in a country and
how rich that country is.
I Uncovering that pattern is interesting for many reasons: discovery and learning from

data.
I Identify countries where people live longer than what we would expect based on

their income, or countries where people live shorter lives.
I Analyzing regression residuals.
I Getting a good approximation of the yE = f (x) function is important.
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Functional form
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Functional form

I Relationships between y and x are often complicated!
I When and why care about the shape of a regression?
I How can we capture function form better?

I This class is about transforming variables in a simple linear regression.
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Functional form - linear approximation

I Linear regression – linear approximation to a regression of unknown shape:

yE = f (x) ≈ α + βx

.
I Modify the regression to better characterize the nonlinear pattern if,

I we want to make a prediction or analyze residuals - better fit
I we want to go beyond the average pattern of association - good reason for

complicated patterns
I all we care about is the average pattern of association, but the linear regression gives

a bad approximation to that - linear approximation is bad
I Not care

I if all we care about is the average pattern of association,
I if linear regression is good approximation to the average pattern
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Functional form - types

There are many types of non-linearities!
I Linearity is one special cases of functional forms.
I We are covering the most commonly used transformations:

I Ln of natural log transformation
I Piecewise linear splines
I Polynomials - quadratic form
I Ratios

Data Analysis for Business, Economics, and Policy 6 / 75 Gábor Békés (Central European University)



Intro Fnc form Logs CS:A1 Splines, polynomials CS:B1-B2 Figures/Choice Messy data Measurement error C1 Weights Sum

Functional form: ln transformation

I Frequent nonlinear patterns better approximated with y or x transformed by taking
relative differences:

I In cross-sectional data usually there is no natural base for comparison.
I Taking the natural logarithm of a variable is often a good solution in such cases.
I When transformed by taking the natural logarithm, differences in variable values

we approximate relative differences.
I Log differences works because differences in natural logs approximate percentage

differences!
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Logarithmic transformation - interpretation

I ln(x) = the natural logarithm of x
I Sometimes we just say log x and mean ln(x). Could also mean log of base 10. Here

we use ln(x)

I x needs to be a positive number
I ln(0) or ln(negative number) do not exist

I Log transformation allows for comparison in relative terms – percentages!

Claim:
ln(x + ∆x) − ln(x) ≈ ∆x

x

I The difference between the natural log of two numbers is approximately the
relative difference between the two for small differences.
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Logarithmic Functions of y and/or x

I ln(x) = the natural logarithm of x
I Sometimes we just say log x and mean ln(x). Could also mean log of base 10. Here

we use ln(x)

I x needs to be a positive number
I ln(0) or ln(negative number) do not exist

I Log transformation allows for comparison in relative terms (percentage), because:

ln(x + y) − ln(x) = ln(1 +
∆x

x
) ≈ ∆x

x
(1)

I Numerically:
I ln(1.01) = 0.0099 ≈ 0.01
I ln(1.1) = 0.095 ≈ 0.1
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Logarithmic Functions of y and/or x

I Alternatively, from the relationship in calculus:

dln(x)

dx
=

1
x

I So that, for small ∆x ,
ln(x + ∆x) − ln(x)

∆x
≈ 1

x

I And thus
ln(x + ∆x) − ln(x) ≈ ∆x

x

I i.e., the difference between the natural log of two numbers is approximately the
relative difference between the two
I For small differences
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Log Approximation of Small Relative Diffs

I Log differences approximate small
relative differences

I When x is small
I 0.3 or smaller
I the log approximation is close

I But for larger x, there is a difference,
I And may have to calculate

percentage change by hand
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Ln(x) vs percentage

I Log differences approximate relative differences (percent)

I log difference - we mean ln(x)
I x needs to be a positive number

I Log differences approximate small relative differences - say below 0.3
I A difference of 0.1 log units corresponds to a 10% difference
I For larger positive differences, the log difference is smaller

I A log difference of +1.0 corresponds to a +170% difference
I For larger negative differences, the log difference is larger in absolute value

I A log difference of -1.0 corresponds to a -63% difference
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Taking logs

I When to take logs?
I When comparison makes mores sense in relative terms

I Percentage differences
I Most important examples

I Prices
I Sales, turnover, GDP
I Population, employment
I Capital stock, inventories
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Interpreting parameters of regressions with log variables

ln(y)E = α + βxi - ‘log-level’ regression
I log y, level x
I α is average ln(y) when x is zero. (Often meaningless.)
I β: y is β ∗ 100 percent higher, on average for observations with one unit higher x.

yE = α + βln(xi ) - ‘level-log’ regression
I level y, log x
I α is : average y when ln(x) is zero (and thus x is one).
I β: y is β/100 units higher, on average, for observations with one percent higher x.

ln(y)E = α + βln(xi ) - ‘log-log’ regression
I log y, log x
I α: is average ln(y) when ln(x) is zero. (Often meaningless.)
I β: y is β percent higher on average for observations with one percent higher x.
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Interpreting parameters of regressions with log variables

I Precise interpretation is key
I The interpretation of the slope (and the intercept) coefficient(s) differs in each

case!

I Often verbal comparison is made about a 10% difference in x if using level-log or
log-log regression.
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To Take log or Not to Take log - substantive reason

Decide for substantive reason:
I Take logs if variable is likely affected in multiplicative ways
I Don’t take logs if variable is likely affected in additive ways

Decide for statistical reason:
I Linear regression is better at approximating average differences if distribution of

dependent variable is closer to normal.
I Take logs if skewed distribution with long right tail

I Most often the substantive and statistical arguments are aligned
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To Take log or Not to Take log

I Log needs variable to be positive
I Never negative, never zero

I What if want log but variable can be 0 or negative?
I For example, wealth

I Create binary indicator(s) and log
I For example, is wealth negative? (0 or 1) Is wealth zero? (0 or 1) If positive, log

wealth (and replace this log value with zero if log cannot be taken)
I Sometimes adding a constant seems to do the trick

I ln(x+1) if x is positive or zero
I Not a good solution in principle
I May be fine if x is either zero or takes on large values

I If x is large ln(x) is almost the same as ln(x+1)
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Hotel price-distance regression and functional form

I price = 132.02− 14.41 ∗ distance
I Issue ?
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Hotel price-distance regression and functional form - log-level

I ln(price) = 4.84− 0.13 ∗ distance
I Better approximation to the average

slope of the pattern.
I Distribution of log price is closer to

normal than the distribution of price
itself.

I Scatterplot is more symmetrically
distributed around the regression line
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Hotel price-distance regression and functional form - level-log

I price = 116.29− 28.30 ∗ ln(distance)

I We now make comparisons in terms
percentage difference in distance
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Hotel price-distance regression and functional form - log-log

I ln(price) =
4.70− 0.25 ∗ ln(distance)

I Comparisons relative terms for
both price and distance
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Comparing different models

Table: Hotel price and distance regressions

(1) (2) (3) (4)
Variables price ln(price) price ln(price)

Distance to city center, miles -14.41 -0.13
ln(distance to city center) -24.77 -0.22
Constant 132.02 4.84 112.42 4.66

Observations 207 207 207 207
R-squared 0.157 0.205 0.280 0.334

Source: hotels-vienna dataset. Prices in US dollars, distance in miles.
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Hotel price-distance regression interpretations

I price-distance: hotels that are 1 mile farther away from the city center are 14 US
dollars less expensive, on average.

I ln(price) - distance: hotels that are 1 mile farther away from the city center are 13
percent less expensive, on average.

I price - ln(distance): hotels that are 10 percent farther away from the city center
are 2.477 US dollars less expensive, on average.

I ln(price) - ln(distance): hotels that are 10 percent farther away from the city
center are 2.2 percent less expensive, on average.

Data Analysis for Business, Economics, and Policy 23 / 75 Gábor Békés (Central European University)



Intro Fnc form Logs CS:A1 Splines, polynomials CS:B1-B2 Figures/Choice Messy data Measurement error C1 Weights Sum

Which model shall we choose? - Substantive reasons

I It depends on the goal of the analysis!

I Prices
I We are after a good deal on a single night – absolute price differences are meaningful.
I Percentage differences in price may remain valid if inflation and seasonal fluctuations

affect prices proportionately.
I Or we are after relative differences - we do not mind about the magnitude that we

are paying, we only need the best deal.
I Distance

I Distance could make more sense in miles than in relative terms – given our purpose
is to find a relatively cheap hotel.
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Which model shall we choose? - Statistical reasoning

I Visual inspection
I Log price models capture patterns better, this could be preferred.

I Compare fit measure (R2)
I Level-level and level-log regression: R-squared of the level-log regression is higher,

suggesting a better fit.
I Log-level and log-log regression: R-squared of the log-log regression is higher,

suggesting a better fit.

I Should not compare R-squared of two regressions with different dependent
variables – compares fit in different units!

I Final verdict:
I Your call....
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Other transformations: splines

I A regression with a piecewise linear spline of the explanatory variable
I results in connected line segments for the mean dependent variable,
I each line segment corresponding to a specific interval of the explanatory variable.

I The points of connection are called knots,
I the line may be broken at each knot so that the different line segments may have

different slopes.
I A piecewise linear spline with m line segments is broken by m-1 knots.

I The places of the knots (the boundaries of the intervals of the explanatory
variable) need to be specified by the analyst.
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Other transformations: splines

I A piecewise linear spline regression results in connected line segments, each line
segment corresponding to a specific interval of x .

I We can interpret parameters!
I The formula for a piecewise linear spline regression with m line segments (and

m − 1 knots in-between) is:
yE = α1 +β1x [if x < k1] + (α2 +β2x)[if k1 ≤ x ≤ k2] + . . .+ (αm +βmx)[if x ≥ km−1]

(2)
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Other transformations: splines

yE = α1 +β1x [if x < k1] + (α2 +β2x)[if k1 ≤ x ≤ k2] + . . .+ (αm +βmx)[if x ≥ km−1]

Interpretation of the most important parameters
I α : average y when x is zero.
I β1 : When comparing observations with x values less than k1, y is β1 units higher,

on average, for observations with one unit higher x value.
I β2 : When comparing observations with x values between k1 and k2, y is β2 units

higher, on average, for observations with one unit higher x value.
I βm : When comparing observations with x values greater than km−1, y is βm units

higher, on average, for observations with one unit higher x value.
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Functional form: splines

I Simple spline
I Knots at 20, 40
I α = 10
I β1 = 0.2
I β2 = 0.7
I β3 = 0.0
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Other transformations: splines

I The way it’s formulated is that each segment has a slope we can interpret

I An alternative presentation of the same results shows the slope of a reference line
segment and the difference of the slope from the reference for every other line
segment

I Need to check output...
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Other transformations: splines

I A regression with a piecewise linear spline of the explanatory variable
I Handles any kind of nonlinearity

I Including non-monotonic associations of any kind

I Offers complete flexibility
I But requires decisions from the analyst

I How many knots?
I Where to locate them
I Decision based on scatterplot, theory / business knowledge
I Often several trials.
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Overview of piecewise linear spline EXTRA

I Automatic models:
I Look at patterns and optimize some penalty function for complexity

I In some fields, used widely. Finance.
I You can make it more complicated: quadratic, cubic or B-splines

I Example: modeling the term-structure of bonds
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Polynomials

I Quadratic function of the explanatory variable
I Allow for a smooth change in the slope
I Without any further decision from the analyst

I Technically: quadratic function is not a linear function (a parabola, not a line)
I Handles only nonlinearity, which can be captured by a parabola.
I Less flexible than a piecewise linear spline, but easier interpretation!

yE = α + β1x + β2x
2

I Can have higher order polynomials, in practice you may use cubic specification:
yE = α + β1x + β2x

2 + β3x
3

I General case
yE = α + β1x + β2x

2 + . . . βnx
n
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Other transformations: quadratic form

yE = α + β1x + β2x
2 (3)

I α is average y when x = 0,
I β1 has no interpretation,
I β2 only shows whether the parabola is

I U-shaped or convex (if β2 > 0)
I inverted U-shaped or concave (if β2 < 0).

I the slope is different for different values of x ,
I the slope is β1 + 2β2x (the first derivative of the quadratic function).

I We can compare two observations, denoted by j and k , that are different in x , by
one unit so that xk = xj + 1. y is higher by β1 + 2β2xj units for observation k than
for observation j .
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Other transformations: ratios

I Ratios of variables - normalization of totals
I Most often: per capita: GDP/capita, revenues/employee, sales/shop
I Can take logs easily

I log of a ratio equals the difference of the two logs:
ln(GDP/Pop) = ln(GDP) − ln(Pop).
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Life expectancy and income

I How long people live in a country and how rich that country is.
I To identify countries where people live longer than what we would expect based on

their income, or countries where people live shorter lives.
I Analyzing regression residuals – getting a good approximation of the yE = f (x)

function is important.
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Life expectancy and income

I Life expectancy at birth in a given year is a measure of how long people live in a
country on average. It is the average age at which people die in the given year.

I Data from World Development Indicators website, maintained by the World Bank.
I Massive panel data,we use 2017.
I There are 217 countries in this data table, but GDP and life expectancy is

available for only 182
I Average life expectancy is 72 years, with a range of 52 to 85.
I Total GDP is 0.2 billion to 20 trillion,

I Due to variation both in size (number of people) and income per person.
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Life expectancy and total GDP

Figure: Life expectancy and total GDP Figure: Life expectancy and ln total GDP
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Life expectancy and GDP per capita

Figure: Life expectancy and GDP/capita Figure: Life expectancy and ln
GDP/capita
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Life expectancy and GDP per capita - log representations

Figure: Life expectancy and GDP/capita Figure: Life expectancy and ln
GDP/capita
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Model choice 1

I Taking ln GDP - because we typically care about percentage and not dollar
differences

I Normalize with population as we care about per capita income to measure richness
of a country

I level-log regression, slope is 5.3
I 1 percent higher GDP per capita have life expectancy higher by 0.053 years, on

average.

I Countries with a 10 percent higher GDP per capita have a half (0.53) year higher
life expectancy on average.
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Life expectancy and income - findings

I Countries with the shortest lives given their income include Equatorial Guinea,
Nigeria, and Cote d’Ivoire (about 11-17ys minus)

I Countries with the longest lives given their income include Vietnam, Nicaragua,
and Lebanon (7ys more)

I Lives are more than two years shorter than expected in the U.S.A., and five years
longer than expected in Japan.
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Life expectancy and income

I Improve model fit, as we care about residuals
I Already took ratio and log
I Splines - capture flattening of at the end

I Quadratic - similar purpose
I Can we compare R-squared of?

I Life expectancy regressed on level GDP/capita
I Life expectancy regressed on ln GDP/capita
I Life expectancy regressed on splines of ln GDP/capita
I Life expectancy regressed on level GDP/capita and its square

I Yes. y is the same.
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Life expectancy and GDP per capita

Figure: Ln GDP/capita - spline Figure: Ln GDP/capita - quadratic
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Life expectancy and income

I R-squared slightly higher for quadratic or spline
I The ranking of the top and bottom lists are similar across these various

regressions, although the magnitudes of the residuals differ slightly.
I Expected: both make little change to what is basically a linear association.

I Here: linear is indeed a good approximation. Not perfect, but good
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Which functional form to choose? - guidelines

Start with deciding whether you care about nonlinear patterns.
I Linear approximation OK if focus is on an average association.
I Transform variables for a better interpretation of the results (e.g. log), and it often

makes linear regression better approximate the average association.
I Accommodate a nonlinear pattern if our focus is

I on prediction,
I analysis of residuals,
I about how an association varies beyond its average.
I Keep in mind - simpler the better!
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Which functional form to choose? - practice

To uncover and include a potentially nonlinear pattern in the regression analysis:
1. Check the distribution of your main variables (y and x)
2. Uncover the most important features of the pattern of association by examining a

scatterplot or a graph produced by a nonparametric regression such as lowess or
bin scatter.

3. Think and check what would be the best transformation!
3.1 Choose one or more ways to incorporate those features into a linear regression

(transformed variables, piecewise linear spline, quadratic, etc.).
3.2 Remember for some variables log transformation or using ratios is not meaningful!

4. Compare the results across various regression approaches that appear to be good
choices. –> robustness check.
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Messy data,Measurement error
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Data Is Messy

I Clean and neat data exist only in dreams
I and in some textbooks

I Data may be messy in many ways
I Structure, storage type differs from what we want

I Needs cleaning (see Chapters 1,2)
I Some observations are influential

I Could drop them, but better not to

I Variables measured with error
I In aggregate data some observations may represent more individuals

I May or may not use weights
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Extreme values and influential observations

I Extreme values concept
I Observations with extreme values for some variable

I Extreme values examples
I Banking sector employment share in countries. Luxembourg: 10%
I Number of foreign companies registered/population. Cyprus or US Virgin Island
I Hotel price of 1 US dollars, 10,000 US dollars
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Extreme values and influential observations

I Influential observations
I Their inclusion or exclusion influences the regression line
I Influential observations are extreme values
I But not all extreme values are influential observations

I Influential observations example
I Very large tech companies in a regression of size and average wage
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Extreme values and influential observations

I What to do with them?
I Depends on why they are extreme

I If by mistake: may want to drop them (EUR1000+)
I If by nature: don’t want to drop them (other hotel)
I Grey zone: patterns work differently for them for substantive reasons
I Here: general rule: avoid dropping observations based on value of y variable

I Dropping extreme observations by x variable may be OK
I May want to drop observations with extreme x if such values are atypical for

question analyzed
I But often extreme x values are the most valuable as they represent informative and

large variation
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Measurement Errors In Variables

I Goal: measuring the association between variables
I Spending and income; price and distance, etc.

I Interested in the estimated coefficient value (not just the sign)
I Observed variables have measurement error

I Mistake, hard-to-measure data, created variables

I Often cannot do anything about it!
I So, question is what the consequence is of such errors
I Does measurement error make a difference in the model parameter estimates?

I Whether we expect parameters (such as OLS coefficient) to be different from what
they would be without the measurement error

I Does the answer depend on the type of measurement error?
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Classical Measurement Error

Classical measurement error (also called
noise)
1. is zero on average (so it does not

affect the average of the measured
variable) and

2. is independent of all other relevant
variables, including the error-free
variable.

Examples

I Recording errors
I E.g., due to mistakes in entering

data
I Reporting errors in surveys or

administrative data
I If they are random around the true

quantities
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quantities

Data Analysis for Business, Economics, and Policy 54 / 75 Gábor Békés (Central European University)



Intro Fnc form Logs CS:A1 Splines, polynomials CS:B1-B2 Figures/Choice Messy data Measurement error C1 Weights Sum

Classical Measurement Error

I Classical measurement error in the dependent (y or left-hand-side) variable
I is not expected to affect the regression coefficients.

I Classical measurement error in the explanatory (x or right-hand-side) variable
I will affect the regression coefficients.
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Classical measurement error in the dependent variable (y)

Compare the slope of model with an error-free dependent variable to the slope of the
same regression where y is measured with error.

y = y∗ + e

yE = α∗ + β∗x∗

yE = α + βx

The slope coefficient in the first regression with error-free dependent variable is

β∗ =
Cov [y∗, x ]

Var [x ]

The coefficient in the second regression with a dependent variable measured with classical
error is

β =
Cov [y , x ]

Var [x ]
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Classical measurement error in the dependent variable (y)

The two are equal because the measurement error is not correlated with all relevant
variables, including x so that Cov [e, x ] = 0

β =
Cov [y , x ]

Var [x ]
=

Cov [(y∗ + e) , x ]

Var [x ]
=

Cov [y∗, x ] + Cov [e, x ]

Var [x ]
=

Cov [y∗, x ]

Var [x ]
= β∗

I Classical measurement error in the dependent (LHS) variable makes the slope
coefficient unchanged because the expected value of the error-ridden y is the same
as the expected value of the error-free y.

I Consequence: classical measurement error in the dependent variable is not
expected to affect the regression coefficients.
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Classical measurement error in the explanatory variable (x)

Compare the slope of model with an error-free explanatory variable to the slope of the
same regression where x is measured with error.

x = x∗ + e

yE = α∗ + β∗x∗

yE = α + βx

The slope coefficient with error-free explanatory variable is

β∗ =
Cov [y , x∗]

Var [x∗]

The coefficient with a explanatory variable measured with classical error is

β =
Cov [y , x ]

Var [x ]
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Classical measurement error in the explanatory variable (x)

I Derivation

β =
Cov [y , x ]

Var [x ]
=

Cov [y , (x∗ + e)]

Var [x∗ + e]
=

Cov [y , x∗] + Cov [y , e]

Var [x∗] + Var [e]
=

Cov [y , x∗]

Var [x∗] + Var [e]

=
Cov [y , x∗]

Var [x∗]

Var [x∗]

Var [x∗] + Var [e]

= β∗
Var [x∗]

Var [x∗] + Var [e]

I So the attenuation bias occurs because the error inflates the variance in the
explanatory (RHS) variable.

Data Analysis for Business, Economics, and Policy 59 / 75 Gábor Békés (Central European University)



Intro Fnc form Logs CS:A1 Splines, polynomials CS:B1-B2 Figures/Choice Messy data Measurement error C1 Weights Sum

Classical measurement error in the explanatory variable (x)

I Slope coefficients are different in the presence of classical measurement error in the
explanatory variable.
I The slope coefficient in the regression with an error-ridden explanatory ((x)) variable

is smaller in absolute value than the slope coefficient in the corresponding regression
with an error-free explanatory variable.

β = β∗ Var [x∗]

Var [x∗] + Var [e]

I The sign of the two slopes is the same
I But the magnitudes differ.

I Attenuation bias: the slope is attenuated because of the error in the x variable.
The larger the noise-to-signal ratio the stronger the attenuation.

I Consequence: on average β∗ is closer to zero than it should be.
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Classical measurement error in the explanatory variable (x)

I Attenuation bias in the slope coefficient:

β = β∗
Var [x∗]

Var [x∗] + Var [e]

I So β is smaller in absolute value than β∗

I As a consequence α∗ is also biased

α∗ = ȳ − β∗x̄

I If one is biased the other one should be biased, too
I The bias can go either way
I If β∗ is smaller α∗ is larger
I And vice versa, if β∗ is larger α∗ is smaller
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Classical measurement error in the explanatory variable (x)

I Without measurement error,
α∗ = ȳ − β∗x∗

I With measurement error,
α = ȳ − βx̄

I Classical measurement error leaves expected values (averages) unchanged so we
can expect

x̄ = x∗

Both regressions go through the same (x̄ , ȳ) point. Can derive that the difference
in the two intercepts:

α = ȳ − βx̄ = ȳ − βx̄∗ = ȳ − βx∗ + β∗x∗ − β∗x∗ = α∗ + (β∗ − β) x∗

= α∗ +

(
β∗ − β∗

Var [x∗]

Var [x∗] + Var [e]

)
x∗ = α∗ + β∗

Var [e]

Var [x∗] + Var [e]
x∗
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Classical measurement error in the explanatory variables (x)

I Noise to signal ratio is
Var [e]

Var [x∗]

I When the noise-to-signal ratio is low
I we may safely ignore the problem.
I this happens often when

I when we are confident that recording errors are at not important
I when our data has an aggregate variable estimated from very large samples.

I When the noise-to-signal ratio is substantial
I we may be better of assessing its consequences.
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Intuition for the Attenuation Bias

I Classical measurement error induces extra variation in the explanatory variable
I Beta will be underestimated

I closer to zero / smaller in absolute value
I Consequence:

I When we compare two observations that are different in x by one unit, the true
difference in x∗ is likely less than one unit

I Therefore we should expect smaller difference in y associated with differences in x ,
than with differences in x∗

I Most often you only speculate about classic measurement error.
I Looking at how is data collected
I Infer from what you learn about the process, sampling
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Extra: non-classical measurement error

I In real-life data measurement error in variables may or may not be classical
I Very often, it isn’t!

I Variables measured with error may be less dispersed (non-zero mean)
I Example: Ideas?

I Measurement error may be related to variables of interest
I Example: Ideas?

I This often means that modelling needs to be redesigned
I Non-classical measurement error has consequences that are different
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Consequences

I Most variables in economic and social data are measured with noise.
I So what is the practical consequence of knowing the potential bias?

I Estimate magnitude - affects regression estimates
I Look for the source, think about it’s nature and consider impact
I Super relevant issue for data collection, data quality
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Classical measurement error summary

1. Classical measurement error in the dependent (y) variable is not expected to affect
the regression coefficients.

2. Classical measurement error in the explanatory (x) variable will affect the
regression coefficients.

3. In particular, the estimated beta will be closer to zero than it would be without
measurement error.

4. Almost all variables are measured with error. Need to think about consequences.

Data Analysis for Business, Economics, and Policy 67 / 75 Gábor Békés (Central European University)



Intro Fnc form Logs CS:A1 Splines, polynomials CS:B1-B2 Figures/Choice Messy data Measurement error C1 Weights Sum

Hotel ratings and measurement error

I In this case study, we will try to understand how measurement error in hotel rating
may be investigated with its impact somewhat understood.

I Let’s investigate another association: price and customer rating. The price
comparison website publishes the averages of ratings customers gave to each hotel.

I Ratings vary between 1 and 5, 5 being excellent – measure of quality: hotels
I Show an association between price and quality.
I However, the measure of customer rating is an average calculated from individual

evaluations. That is a noisy measure of hotel quality
I Fundamentally, quality is more than rating
I Technical reason - too few ratings to express quality - personal experience too large
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Hotel ratings and measurement error

I The data includes the number of ratings that were used to calculate average
customer ratings.

I If classical measurement error plays a role, it should play a larger role for hotels
with few ratings than for hotels with many ratings.

I Three groups: few, medium, many. Focus few vs many
I Few ratings – less than 100 ratings (77 hotels, with 57 ratings each on average).
I Many ratings – more than 200 ratings (72 hotels, with 417 ratings each on

average).
I Average customer rating is rather similar (3.94 and 4.20). Standard deviation of

the average customer ratings – lot larger among hotels with few ratings (0.42
versus 0.26).
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Hotel ratings and measurement error

I We regressed (the log of) hotel price (y) on average ratings (x) separately for
hotels with few ratings (less than 100) and hotels with many ratings ( more than
200).

I If there is classical measurement error in average ratings, the error should be more
prevalent among hotels with few ratings, and so the regression line should be...

...
flatter for few ratings
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Hotel ratings and measurement error

I Log hotel price and average
customer ratings.

I Hotels with noisier measure of
ratings (# ratings < 100)

I Hotels with less noisy measure
(# ratings > 200)
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Hotel ratings and measurement error

I That is indeed what we find. The first slope coefficient is 0.35; the second one is
0.55

I flatter, less positive slope and higher intercept among hotels with few ratings.
I There appears to be substantial measurement error in average customer ratings

among hotels where that average rating is based on a few customers’ reports.
I Thus, we can expect a regression with average customer ratings on the

right-hand-side to produce an attenuated slope.
I Should we do anything about that? And if yes, what?

I If we are interested in the effect of ratings on prices, this is clearly an issue.
Discard hotels with less than a minimum number of reviews (maybe 10 or 20 or 50
or 100 - depends on sample size)
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Using weights in regressions

I Different observations may have different weights
I to denote different size of larger units when those larger units are the observations in

the data
I population of countries

I Use weights of size IF want to uncover the patterns of association for the
individuals
I who make up the larger units (e.g., people in countries),
I Not use weights but not if we want to uncover the patterns of association between

the larger units (e.g., countries).
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Life expectancy and GDP per capita - weights

Figure: Unweighted Figure: Population weights
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Summary take-away

I Nonlinear functional forms may or may not be important for regression analysis.
I They are usually important for prediction.
I They are usually less important for causal analysis.
I When important, we have multiple options, such as taking logs or specifying linear

splines or polynomials such as a quadratic.

I Influential observations and other extreme values are usually best analyzed with
the rest of the data; we should discard them only if we have a good reason.
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