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Generalizing: reminder

I We have uncovered some pattern in our data. We are interested in generalize the
results.

I Question: Is the pattern we see in our data
I True in general?
I or is it just a special case what we see?

I Need to specify the situation
I to what we want to generalize

I Inference - the act of generalizing results
I From a particular dataset to other situations or datasets.

I From a sample to population/ general pattern = statistical inference
I Beyond (other dates, countries, people, firms) = external validity
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Generalizing Linear Regression Coefficients from a Dataset

I We estimated the linear model
I β̂ is the average difference in y in the dataset between observations that are

different in terms of x by one unit.
I ŷi best guess for the expected value (average) of the dependent variable for

observation i with value xi for the explanatory variable in the dataset.
I Sometimes all we care about are patterns, predicted values, or residuals, in the

data we have.
I Often interested in patterns and predicted values in situations that are not limited

to the dataset we analyze.
I To what extent predictions / patterns uncovered in the data generalize to a situation

we care about.
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Statistical Inference: Confidence Interval

I The 95% CI of the slope coefficient of a linear regression
I similar to estimating a 95% CI of any other statistic.

CI (β̂)95% =
[
β̂ − 2SE (β̂), β̂ + 2SE (β̂)

]
I Formally: 1.96 instead of 2. (computer uses 1.96 – mentally use 2)

I The standard error (SE) of the slope coefficient
I is conceptually the same as the SE of any statistic.
I measures the spread of the values of the statistic across hypothetical repeated

samples drawn from the same population (or general pattern) that our data
represents
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Standard Error of the Slope

The simple SE formula of the slope is

SE (β̂) =
Std [e]√
nStd [x ]

I Where:
I Residual: e = y − α̂− β̂x
I Std[e], the standard deviation of the

regression residual,
I Std[x], the standard deviation of the

explanatory variable,
I
√
n the square root of the number of

observations in the data.
I Smaller sample – may use

√
n − 2.

I A smaller standard error translates into
I narrower confidence interval,
I estimate of slope coefficient with more

precision.
I More precision if

I smaller the standard deviation of the
residual – better fit, smaller errors.

I larger the standard deviation of the
explanatory variable – more variation in x
is good.

I more observations are in the data.

I This formula is correct assuming
homoskedasticity
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Heteroskedasticity Robust SE
I Simple SE formula is not correct in general.

I Homoskedasticity assumption: the fit of the regression line is the same across the
entire range of the x variable

I In general this is not true

I Heteroskedasticity: the fit may differ at different values of x so that the spread of
actual y around the regression is different for different values of x

I Heteroskedastic-robust SE formula (White or Huber) is correct in both cases
I Same properties as the simple formula: smaller when Std [e] is small, Std [x ] is large

and n is large
I E.g. White formula uses the estimated errors’ square from the model and weight the

observations when calculating the SE [β̂]
I Note: there are many heteroskedastic-robust formula, which uses different weighting

techniques. Usually referred as ‘HC0’, ‘HC1’, ... , ‘HC4’.
I R’s default ‘HC2’ is perfect.
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The CI Formula in Action

I Run linear regression
I Compute endpoints of CI using SE
I 95% CI of slope and intercept

I β̂ ± 2SE
(
β̂
)
; α̂± 2SE (α̂)

I In regression, as default, use robust SE.
I Sometimes: homoskedastic and heteroskedasticity robust SEs are similar.
I Sometimes: heteroskedasticity robust SE is larger – and rightly so.

I Coefficient estimates, R2 etc. are remain the same.

Data Analysis for Business, Economics, and Policy 8 / 47 Gábor Békés (Central European University)



Generalizing Results Testing, p-values Intervals for Predicted Values External validity CS:B1 CS:A1 CS:A2 CS:A3 CS:A4

Testing if (true) beta is zero

I Testing hypotheses: decide if a statement about a general pattern is true.
I Most often: Dependent variable and the explanatory variable are related at all?
I The null and the alternative:

H0 : βtrue = 0, HA : βtrue 6= 0

I The t-statistic is:

t =
β̂ − 0
SE (β̂)

I Often t = 2 (1.96) is the critical value, which corresponds to 95% CI.
(t = 2.6→ 99%)
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Testing if (true) beta is zero

Practical guidance:
I Choose a critical value.

I p-vale, the probability of a false positive in our dataset
I Balancing act: false positive (FP) and negative (FN)

I Higher critical value
I FP: less likely (less likely rejection of the null).
I FN: more likely (high risk of not rejecting a null even though it’s false)
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Language: significance of regression coefficients

I A coefficient is said to be “statistically significant”
I If its confidence interval does not contain zero
I So true value unlikely to be zero

I Level of significance refers to what % confidence interval
I Language uses the complement of the CI

I Most common: 5%, 1%
I Significant at 5%

I Zero is not in 95% CI, Often denoted p < 0.05
I Significant at 1%

I Zero is not in 99% CI, (p < 0.01)
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Ohh, that p=5% cutoff

I When testing, you start with a critical value first
I Often the standard to publish a result is to have a p value below 5%.

I Arbitrary, but... [major discussion]
I Some fun: here (+R code)

I If you find a result that cannot be told apart from 0 at 1% (max 5%), you should
say that explicitly.
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Dealing with 5-10%

I Sometimes regression result will not be significant at 5% but will be at 10%.
I What not to do? Avoid language like...

I "a barely detectable statistically significant difference" (p=0.073)
I "a margin at the edge of significance" (p=0.0608)
I "not significant in the normally accepted statistical sense" (p=0.064)
I "slight tendency toward significance" (p=0.086)
I "slightly missed the conventional level of significance" (p=0.061)

I More here
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Dealing with 5-10%

I Sometimes regression result will not be significant at 1% (5%) but will be at 10%.
I What to take? It depends. (our view...)
I Sometimes you work on a proposal. Proof of concept.

I To be lenient is okay.
I Say the point estimate and note the 95% confidence interval.

I Sometimes looking for a proof. Beyond reasonable doubt.
I Gender equality to be defended for a judge.
I Here you wanna be below 1%
I If not, say the p-value and note that at 1% you cannot reject the null of no

difference.

I Publish the p-value. Be honest...
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p-Hacking

I Very often many steps lead to a regression analysis
I Many: arbitrary decisions

I Often we work with a bias: looking to reinforce expectations
I Show a "significant" result.

I p-hacking = do many versions, only showing results significant at, say, 5%
I Danger: methods are fine, but only not everything is presented

I Present your most conservative result first
I Example: if uncertain, keep extreme values in.

I Show robustness checks: many additional regressions with different decisions
I May add that keeping extreme values weakens findings

I p-Hacking is linked to publication bias
I More: Ch06.9
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Chance Events And Size of Data

I Finding patterns by chance may go away with more observations
I Individual observations may be less influential
I Effects of idiosyncratic events may average out

I E.g.: more dates
I Specificities to a single dataset may be less important if more sources

I E.g.: more hotels
I More observations help only if

I Errors and idiosyncrasies affect some observations but not all
I Additional observations are from appropriate source

I If worried about specificities of Vienna more observations from Vienna would not help
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Prediction uncertainty

I Goal: predicting the value of y for observations outside the dataset, when only the
value of x is known.

I We predict y based on coefficient estimates, which are relevant in the general
pattern/population. With linear regression you have a simple model:

yi = α̂ + β̂xi + εi

I The estimated statistic here is a predicted value for a particular observation ŷj . For
an observation j with known value xj this is

ŷj = α̂ + β̂xj

I Two kinds of intervals:
I Confidence interval for the predicted value/regression line - uncertainty about α̂, β̂
I Prediction interval - uncertainty about α̂, β̂ and εi
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Confidence interval of the regression line I.

I Confidence interval (CI) of the predicted value = the CI of the regression line.
I The predicted value ŷj is based on α̂ and β̂ only.

I The CI of the predicted value combines the CI for α̂ and the CI for β̂.

I What value to expect if we know the value of xj and we have estimates of
coefficients α̂ and β̂ from the data.

I The 95% CI of the predicted value - 95%CI (ŷj) is
I the value estimated from the sample
I plus and minus its standard error.
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Confidence interval of the regression line II.
I Predicted average y has a standard error (homoskedastic case)

95%CI (ŷj) = ŷ ± 2SE (ŷj)

SE (ŷj) = Std [e]

√
1
n

+
(xj − x̄)2

nVar [x ]

I Based on formula for regression coefficients, it is small if:
I coefficient SEs are small (depends on Std [e] and Std [x ]).
I Particular xj is close to the mean of x
I We have many observations n

I The role of n (sample size), here is even larger.
I Use robust SE formula in practice, but a simple formula is instructive
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Confidence interval of the regression line - use

I Can be used for any model
I Spline, polynomial
I The way it is computed is different for different kinds of regressions (usually

implemented in R packages)
I always true that the CI is narrower

I the smaller Std [e],
I the larger n and
I the larger Std [x ]

I In general, the CI for the predicted value is an interval that tells where to expect
average y given the value of x in the population, or general pattern, represented by
the data.
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Prediction interval

I Prediction interval answers:
I Where to expect the particular yj value if we know the corresponding xj value and

the estimates of the regression coefficients from the data.
I Difference between CI and PI.

I The CI of the predicted value is about ŷj : where to expect the average value of the
dependent variable if we know xj .

I The PI (prediction interval) is about yj itself not its average value: where to expect
the actual value of yj if we know xj .

I So PI starts with CI. But adds additional uncertainty (Std [εi ]) that actual yj will
be around its conditional.

I What shall we expect in graphs?
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Confidence vs Prediction interval

Confidence interval Prediction interval
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More on prediction interval

I The formula for the 95% prediction
interval is

95%PI (ŷj) = ŷ ± 2SPE (ŷj)

SPE (ŷj) = Std [e]

√
1 +

1
n

+
(xj − x̄)2

nVar [x ]

I SPE – Standard Prediction Error (SE
of prediction)
I It does matter here which kind of SE

you use!

I Summarizes the additional uncertainty:
the actual yj value is expected to be
spread around its average value.
I The magnitude of this spread is best

estimated by the standard deviation
of the residual.

I With SPE, no matter how large the
sample we can always expect actual y
values to be spread around their
average values.
I In the formula, all elements get very

small if n gets large, except for the
new element.
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External validty
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External validity

I Statistical inference helps us generalize to the population or general pattern

I Is this true beyond (other dates, countries, people, firms)?
I As external validity is about generalizing beyond what our data represents, we

can’t assess it using our data.
I We’ll never really know. Only think, investigate, make assumption, and hope...
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Data analysis to help assess external validity

I Analyzing other data can help!
I Focus on β, the slope coefficient on x .
I The three common dimensions of generalization are time, space, and other groups.

I To learn about external validity, we always need additional data, on say, other
countries or time periods.
I We can then repeat regression and see if slope is similar!
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Stability of hotel prices - idea

I Here we ask different questions: whether we can infer something about the
price–distance pattern for situations outside the data:

I Is the slope coefficient close to what we have in Vienna, November, weekday:
I Other dates (focus in class)
I Other cities
I Other type of accommodation: apartments

I Compare them to our benchmark model result
I Learn about uncertainty when using model to some types of external validity.
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Why carrying out such analysis?

I Such a speculation may be relevant:
I Find a good deal in the future without estimating a new regression but taking the

results of this regression and computing residuals accordingly.
I Be able to generalize to other groups, date and places.
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Benchmark model

The benchmark model is a spline with a knot at 2 miles.

ln(y)E = α1 + β1x1x<2m + (α2 + β2x)1x≥2m

Data is restricted to 2017, November weekday in Vienna, 3-4 star hotels, within 8 miles.

I Model has three output variables: α = 5.02, β1 = −0.31, β2 = 0.02
I α: Hotel prices are on average 151.41 euro (exp(5.02)) at the city center
I β1: hotels that are within 2 miles from the city center, prices are 0.31 log units or

36% (exp(0.31)− 1) cheaper, on average, for hotels that are 1 mile farther away
from the city center.

I β2: hotels in the data that are beyond 2 miles from the city center, prices are 2%
higher, on average, for hotels that are 1 mile farther away from the city center.
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Comparing dates

(1) (2) (3) (4)
VARIABLES 2017-NOV-weekday 2017-NOV-weekend 2017-DEC-holiday 2018-JUNE-weekend

dist_0_2 -0.31** -0.44** -0.36** -0.31**
(0.038) (0.052) (0.041) (0.037)

dist_2_7 0.02 -0.00 0.07 0.04
(0.033) (0.036) (0.050) (0.039)

Constant 5.02** 5.51** 5.13** 5.16**
(0.042) (0.067) (0.048) (0.050)

Observations 207 125 189 181
R-squared 0.314 0.430 0.382 0.306

Note: Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
Source: hotels-europe data. Vienna, reservation price for November and December 2017, June in 2018
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Comparing dates - interpretation

I November weekday and the June weekend: β̂1 = 0.31
I Estimate is similar for December (-0.36 log units)
I Different for the November weekend: they are 0.44 log units or 55% (exp(0.44)− 1)

cheaper during the November weekend.
I The corresponding 95% confidence intervals overlap somewhat: they are [-0.39,-0.23]

and [-0.54,-0.34].
I Thus we cannot say for sure that the price–distance patterns are different during the

weekday and weekend in November.
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Stability of hotel prices - takeaway

I Fairly stable overtime but uncertainty is larger
I For more, read the case study B in Chapter 09

I Evidence of some external validity in Vienna

I External validity – if model applied beyond data, there is additional uncertainty!
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Case study A: Going through the process
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Case Study: Gender gap in earnings?

I Earning determined by many factor
I The idea of gender gap:

I Is there a systematic wage differences between male and female workers?
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Case Study: Gender gap - How data is born?

I Current Population Survey (CPS) of the U.S.
I Administrative data

I Large sample of households
I Monthly interviews

I Rotating panel structure: interviewed in 4 consecutive months, then not interviewed
for 8 months, then interviewed again in 4 consecutive months

I Weekly earnings asked in the “outgoing rotation group”
I In the last month of each 4-month period

I See more on MORG: “Merged outgoing rotation group”
I Sample restrictions used:

I Sample includes individuals of age 16-65
I Employed (has earnings)
I Self-employed excluded
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Case Study: Gender gap - the data

I Download data for 2014 (316,408 observations) with implemented restrictions
N = 149, 316

I Weekly earnings in CPS
I Before tax
I Top-coded very high earnings

I at $2,884.6 (top code adjusted for inflation, 2.5% of earnings in 2014)
I Would be great to measure other benefits, too (yearly bonuses, non-wage benefits).

But we don’t measure those.
I Need to control for hours

I Women may work systematically different in hours than men.

I Divide weekly earnings by ‘usual’ weekly hours (part of questionnaire)
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Case Study: Gender gap - conditional descriptives

Gender mean p25 p50 p75 p90 p95
Male $ 24 13 19 30 45 55
Female $ 20 11 16 24 36 45
% gap -17% -16% -18% -20% -20% -18%

I 17% difference on average in per hour earnings between men and women
I For linear regression analysis, we will use ln wage to compare relative difference.
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Case Study: Gender gap in comp science occupation - Analysis

I One key reason for gap could be women being sectors / occupations that pay less.
Focus on a single one: Computer science occupations, N = 4, 740

ln(w)E = α + β × Gfemale

I We regressed log earnings per hour on G binary variable that is one if the
individual is female and zero if male.

I The log-level regression estimate is β̂ = −0.1475
I female computer science field employee earns 14.7 percent less, on average, than

male with the same occupation in this dataset.
I Statistical inference based on 2014 data.

I SE: .0177; 95% CI: [-.182 -.112]
I Simple vs robust SE - Here no practical difference.
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Case Study: Gender gap in comp science occupation - Generalizing

I In 2014 in the U.S.
I the population represented by the data

I we can be 95% confident that the average difference between hourly earnings of
female CS employee versus a male one was -18.2% to -11.2%.

I This confidence interval does not include zero.
I Thus we can rule out with a 95% confidence that their average earnings are the

same.
I We can rule this out at 99% confidence as well

Data Analysis for Business, Economics, and Policy 39 / 47 Gábor Békés (Central European University)



Generalizing Results Testing, p-values Intervals for Predicted Values External validity CS:B1 CS:A1 CS:A2 CS:A3 CS:A4

Case Study: Gender gap in market analyst occupation

I Market research analysts and marketing specialists, N = 281, where females are
61%.
I Average hourly wage is $29 (sd:14.7)

I The regression estimate is β̂ = −0.113:
I Female market research analyst employee earns 11.3 percent less, on average, than

men with the same occupation in this dataset.
I Generalization:

I SE [β̂]: .061; 95% CI: [-.23 +0.01]
I We can be 95% confident that the average difference between hourly earnings of

female CS employee versus a male one was -23% to +1% in the total US population
I This confidence interval does include zero. Thus, we can not rule out with a 95%

confidence that their average earnings are the same. (p = 0.068)
I More likely, though, female market analysts earn less.

I we can rule out with a 90% confidence that their average earnings are the same

Data Analysis for Business, Economics, and Policy 40 / 47 Gábor Békés (Central European University)



Generalizing Results Testing, p-values Intervals for Predicted Values External validity CS:B1 CS:A1 CS:A2 CS:A3 CS:A4

Our two samples. What is the source of difference in CI?
I Computer and Mathematical Occupations

I 4740 employees, Female: 27.5%
I The regression estimate of slope: -0.1475 ; 95% CI: [-.1823 -.1128]

I Market research analysts and marketing specialists
I 281 employees, Female: 61%

I The regression estimate of slope is -0.113; 95% CI: [-.23 +0.01]
I Why the difference?

I True difference: gender gap is higher in CS.
I Statistical error: sample size issue −→ in small samples we may find more variety of

estimates. (Why? Remember the SE formula.)
I Which explanation is true?

I We do not know!
I Need to collect more data in CS industry.
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Confidence vs Prediction interval

Confidence interval Prediction interval
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Capture non-linearity with functional form

Lowess and scatterplot Various functional forms overlaid
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Average log earnings and age: regressions with CI
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Testing hypotheses about regression coefficients

I Recall that the coefficient estimate was 0.11
I To formally test whether average earnings are the same by gender, we simply test

if the coefficient on the binary variable is zero
I against the alternative that it is not zero.

I Corresponding t-statistic is 1.8.
I The critical values for a 5% significance level are ±2, and 1.8 falls within the

critical values not outside of them.
I Thus, we cannot reject the null of equal average earnings at a 5% level of

significance.
I Same result with the p-value: p = 0.07 > 0.05
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Case Study: Earnings and age - presenting regression table

Model:
I lnwage = α + βfemale

I Only one industry: market
analysts, N = 281

I Robust standard errors in
parentheses *** p<0.01, **
p<0.05, * p<0.1.

Variables ln wage

Female -0.11
(0.062)

Constant 3.31**
(0.049)

Observations 281
R-squared 0.012
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Case Study: Earnings and age - presenting regression table

Model:
I lnwage = α+ f (age)

I Only one industry:
market analysts,
N = 281

I Robust standard
errors in parentheses
*** p<0.01, **
p<0.05, * p<0.1.

VARIABLES ln wage
age 0.014**

(0.003)
Constant 2.732**

(0.101)

Observations 281
R-squared 0.098
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