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Motivation

» What are the health benefits of not smoking? Considering the 50+ population, we
can investigate if differences in smoking habits are correlated with differences in
health status.
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Binary events

» Start with binary events: things that either happen or don't happen captured by
binary variable
» How can we model these events?
» We do not observe ‘on average’ larger values for y in this case.

» Solution - model instead the probabilities!

Ely] = Ply =1]

» The average of a 0-1 binary variable is also the probability that it is one.
» Frequency (25% of cases) — probability (25% chance)

» Expected value = average probability of event happening
» Use the same tools, but interpretation is changing!

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Modelling events: LMP
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Linear probability model - LPM

» Modelling probability — regression with binary dependent variable.

» Linear Probability Model (LPM) is a linear regression with a binary dependent
variable

» Differences in average y are also differences in the probability that y = 1
» Linear regressions with binary dependent variables show

» differences in expected y by x, is also differences in the probability of y = 1 by x.
» Introduce notation for probability:

yP = Ply = 1|x1, x2, .. .]
» Linear probability model (LPM) regression is

yP = Bo 4 Bix1 + Baxe

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Linear probability model - interpretation

yF = Bo + Bix1 + Baxo

» y” denotes the probability that the dependent variable is one, conditional on the
right-hand-side variables of the model.

» (o shows the probability of y if all x are zero.

» (3, shows the difference in the probability that y = 1 for observations that are
different in x; but are the same in terms of x».

» Still true: average difference in y corresponding to differences in x; with x» being
the same.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Linear probability model - modelling

» Linear probability model (LPM) using OLS.
» \We can use all transformations in x, that we used before:
» Log, Polinomials, Splines, dummies, interactions, ect.

» All formulae and interpretations for standard errors, confidence intervals,
hypotheses and p-values of tests are the same.

» Heteroskedasticity robust error are essential in this case!

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)



Predicted values in LPM

» Predicted values - §¥ - may be problematic, calculated the same way, but to be

interpreted as probabilities.
9P = Bo + Brxa + Boxo

» Predicted values need to be between 0 and 1 because they are probabilities

» But in LPM, they may be below 0 and above 1. No formal bounds in the model.

» With continuous variables that can take any value (GDP, Population, sales, etc), this
could be a serious issue
» With binary variables, no problem ('saturated models’)

» Problem if goal is prediction!
» Not a big issue for inference — uncover patterns of association.
» But note in theory it may give biased estimates...

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Does smoking pose a health risk?

The question of the case study is whether, and by how much less likely smokers are to
stay healthy than non-smokers.

» focus on people of age 50 to 60 who consider themselves healthy

» ask them four years later as well

Research question: Does smoking lead to deteriorating health?

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Data

» y = 1 if person stayed healthy

» y = 0 if person became unhealthy
» Data comes from SHARE (Survey for Health, Aging and Retirement in Europe)
» 14 European countries
Demographic information on all individual
2011 and 2015 participants are used

| 2
| 2
» Being healthy means to report “feeling excellent” or “very good”
> N =3,109

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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LPM

Start with a simple univariate model with being a smoker.
stays healthy” = o + Bsmoker

Both dependent and independent models are using only dummy variables.

Estimated 3 is -0.072

Can we draw a scatterplot?

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Scatterplot

Figure: Staying healthy - scatterplot and regression line
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LPM Interpretation

» The coefficient on smokes shows the difference in the probability of staying healthy
comparing current smokers and current nonsmokers.

» Current smokers are 7 percentage points less likely to stay healthy than those that
did not smoke.

» Can add additional controls to capture if quitting matters.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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LPM with many regressors |.

> Multiple regression — closer to causality
» compare people who are very similar in many respects but are different in smoking
habits
» find many confounders that could be correlated with smoking habits and health
outcomes

» Smokers / non-smokers — different in many other behaviors and conditions:
» personal traits
» behavior such as eating, exercise
» socio-economic conditions
» background - e.g. country they live in

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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LPM with many regressors Il.

» Pick variables:

» gender dummy, age, years of education,

» income (measured as in which of the 10 income groups individuals belong within
their country),

» body mass index (a measure of weight relative to height),

» whether the person exercises regularly, the country in which they live.

» country - set of binary indicators.

» Think functional form:

» Continuous control variables might have nonlinear relationship with staying healthy
» Explore the relationship with nonparametric tools

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Functional form selection
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Decisions: (1) Include education as a piecewise linear spline with knots at 8 and 18 years; (2) include income in
a linear way.
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LPM results

Probability of staying healthy - extended model

VARIABLES Staying healthy ~ VARIABLES (cnt.)

Current smoker (Y/N) -0.061%* Income group 0.008*
(0.024) (0.003)

Ever smoked (Y/N) 0.015 BMI (for < 35) -0.012%*
(0.020) (0.003)

Female (Y/N) 0.033 BMI (for >= 35) 0.006
(0.018) (0.017)

Age -0.003 Exercises regularly (Y/N) 0.053**
(0.003) (0.017)

Years of education (for < 8) -0.001 Years of education (for >= 18) -0.010
(0.007) (0.012)

Years of education (for >= 8 and < 18) 0.017** Country indicators YES
(0.003)

Observations 3,109

Robust standard errors in parentheses. ** p<0.01, * p<0.05
Y/N denotes binary vars. BMI and education entered as spline. Age in years. Income in deciles.

Data Analysis for Business, Economics, and Policy
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Detour: Regression Tables

» If need to show many explanatory variables

» Do not show table 12*2 rows, people will not see it.
» Either only show selected variables

» Or may need to create two columns.

> Make site you have title, N of observations, footnote on SE, stars.

» SE, stars: many different notations. Check carefully.
» Default is ***= p<0.01. Bit often **=p<0.01 (like here)

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Does smoking pose a health risk?— LPM interpret

» coefficient on currently smoking is —0.06
» The 95% confidence interval is relatively wide [—0.11, —0.01], but it does not
contain zero

» no significant differences in staying healthy when comparing never smokers to
those who used to smoke but quit

» women are 3 percentage points more likely to stay in good health

> age does not seem to matter in this relatively narrow age range of 50 to 60 years

> differences in years of education

» do not matter if we compare people with less than 8 years or more than 18 years,
P> matters a lot in-between, with a one-year-difference corresponding to 1.7 percentage
point difference in the likelihood of staying healthy

» income matters somewhat less, maybe non-linear?

» Regular exercise matters.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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LPM'’s predicted probabilities

Histogram of the predicted probabilities
» Predicted probabilities are

7% 9

calculated from the extended
linear probability model. 7
» Predicted probability of 7
staying healthy from this 2 4%
linear probability model ranges g
between 0.036 and 1.011
» LPM means it can be 7
below 0 or above 1... 1% 1 Il ||| | |||
> Here, only marginally 0% 4= RODNDRRRRIRRENN ul I 1] _,_,_"u-
0.0 0.2 0.4 0.6 0.8 1.0
a bOVe 1 Predicted probability of staying healthy (LPM)
Source: share—-health dataset.
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Compare predicted probability distribution

» Drill down in distribution:
» Looking at the composition of people: top vs bottom part of probability distribution
» Look at average values of covariates for top and bottom 1% of predicted

probabilities!
Top 1% predicted probability: Bottom 1% predicted probability:
> no current smokers, women, » 37.5% current smokers, 63% men
> avg 17.3ys of education, higher income > 7.6 years of education, lower income
> BMI _Of 20.7, and 90% of them » BMI of 30.5, 19% exercise
exercise.

Gabor Békés (Central European University)
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Modelling events: logit
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Probability models: logit and probit

» Prediction: predicted probability need to be between 0 and 1

» For prediction, we use non-linear models

> Relate the probability of the y = 1 event to a nonlinear function of the linear
combination of the explanatory variables -> ‘Link function’

» Link function is some F(-), s.t. F(y) may be used in linear models.

> Two options: Logit and probit — different link function
» Resulting probability is always strictly between zero and one.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Link functions I.

The logit model has the following form:

exp(fBo + Bix1, Poxo + ...)
1+ eXp(ﬁo + Bix1 + Paxo + )

yP = NBo + Bixt, Boxo + ...) =

where the link function A(z) = lzp(z()) is called the logistic function.

The probit model has the following form:
yP = 0(Bo + Brxa + Baxa + ...)

where the link function ®(z) = [*__ rexp( > dz, is the cumulative distribution
function (CDF) of the standard normal distribution.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Link functions Il.

» Both A and ® are increasing S-shape
curves, bounded between 0 and 1.
(Y here is A(z) and ®(z)

» Plotted against their respective "z"
values. (Here -3 to 3)

» Small difference (indistinguishable) -
logit less steep close to zero and one
= thicker tails than the probit.

» In our models, ‘Z' is a linear
combination of 3 coefficients and
x-s. The parameter estimates are
typically different in probit vs logit.

Linear Index

--------- Logit — —— Probit

Data Analysis for Business, Economics, and Policy
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Logit and probit interpretation

» Both the probit and the logit transform the 89 + S1x1 + ... linear combination
using a link function that shows an S-shaped curve.
» The slope of this curve keeps changing as we change whatever is inside.

» The slope is steepest when y* = 0.5;
» it is flatter further away; and it becomes very flat if y* is close to zero or one.

» The difference in y” that corresponds to a unit difference in any explanatory

variable is not the same.
» You need to take the partial derivatives. It depends on the value of x

» Important consequence: no direct interpretation of the raw coefficient values!

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Marginal differences

» Link functions makes variation in association between x and y* — for logit and
probit models, we do not interpret raw coefficients!

» Instead, transform them into ‘marginal differences’ for interpretation purposes

> The average marginal difference for x is the average difference in the probability
of y = 1, that corresponds to a one unit difference in x.

» Software may call them ‘marginal effects’ or ‘average marginal effects (AME)’ or
‘average partial effects’.

> Average marginal difference has the exact same interpretation as the
coefficient of linear probability models.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Maximum likelihood estimation

» When estimating a logit or probit model, we use ‘maximum likelihood" estimation.
» See 11.U2 for details.

» |dea for maximum likelihood is another way to get coefficient estimates. Done in
steps.

» You specify a (conditional) distribution, that you will use during the estimation.
» This is logistic for logit and normal for probit model.

» You maximize this function w.r.t. your  parameters — gives the maximum
likelihood for this model.

» No closed form solution — need to use search algorithms.

» Search algorithms will play critical role in machine learning as well.
» More in DA3.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)



Predictions for LMP, Logit and Probit .

Comparing probabilities from models
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0.9 4

» Compare the three model results 0.4+
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Predictions for LMP, Logit and Probit II.

» Predicted probabilities from the Comparing probabilities from models
logit and the probit are practically
the same 101
» range is between 0.10 and 0.92, Z:
which is narrower than the 2074
LPM, which ranges from 0.036 % 064
to 0.101 1%-o.s-
» LPM, logit and probit models %Z:
produce almost exactly the same 024
predicted probabilities 014 R T —— P
i 0.0 1 : T : T : T : T )
» except for the lowest and highest 00 01 02 03 04 05 06 07 08 09 10

Predicted probability of staying healthy (LPM)

probabilities
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Coefficient results for logit and probit

) @ ® @ ®)
Dep.var.: stays healthy LPM logit coeffs  logit marginals  probit coeffs  probit marginals
Current smoker -0.061* -0.284%** -0.061%* -0.171%* -0.060*
(0.024) (0.109) (0.023) (0.066) (0.023)
Ever smoked 0.015 0.078 0.017 0.044 0.016
(0.020) (0.092) (0.020) (0.056) (0.020)
Female 0.033 0.161* 0.034* 0.097 0.034
(0.018) (0.082) (0.018) (0.050) (0.018)
Years of education (if < 8) -0.001 -0.003 -0.001 -0.002 -0.001
(0.007) (0.033) (0.007) (0.020) (0.007)
Years of education (if >=8 and < 18)  0.017** 0.079** 0.017** 0.048** 0.017**
(0.003) (0.016) (0.003) (0.010) (0.003)
Years of education (if >= 18) -0.010 -0.046 -0.010 -0.029 -0.010
(0.012) (0.055) (0.012) (0.033) (0.012)
Income group 0.008* 0.036* 0.008* 0.022* 0.008*
(0.003) (0.015) (0.003) (0.009) (0.003)
Exercises regularly 0.053** 0.255** 0.055** 0.151** 0.053**
(0.017) (0.079) (0.017) (0.048) (0.017)
Age, BMI, Country YES YES YES YES YES
Observations 3,109 3,109 3,109 3,109 3,109

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)



CS A2-A3
000®

Does smoking pose a health risk?— logit and probit

> LPM — interpret the coefficients.
> Logit, probit - Interpret the marginal differences. Basically the same.

» Marginal differences are essentially the same across the logit and the probit.
» Essentially the same as the corresponding LPM coefficients.

» Happens often:

» We could not know which is the "right model" for inference
» Often LPM is good enough for interpretation.
» Check if logit/probit very different.

> Investigate functional forms if yes.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Goodness of fit measures

» There is no comprehensively accepted goodness of fit measure...
» This is because we do not observe probabilities only 1 and 0...

» R-squared is not the same meaning as before
» Evaluating fit for probability models, we compare predictions that are between zero
and one to values that are zero or one.
» But predicted probabilities would not fit the zero-one variables, so we'd never get it
right.

» R-squared less natural measure of fit, but we can calculate it as usual.
» But: R-squared can not be interpreted the same way we did for linear models.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Brier score

» Brier score
n

. 1 ~P 2
Brier = 136 ~ )
i=1
» The Brier score is the average distance (mean squared difference) between
predicted probabilities and the actual value of y.
» Smaller the Brier score, the better.
» When comparing two predictions, the one with the smaller Brier score is the better
prediction because it produces less (squared) error on average.

» Related to a main concept in prediction: mean squared error (MSE)

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Pseudo R2

» Pseudo R-squared

» Similar to the R-squared — measures the goodness of fit, tailored to binary outcomes.
» Many versions of this measure. Most widely used: McFadden's R-squared

» Computes the ratio of log-likelihood of the model vs intercept only.

» Can be computed for the logit and the probit but not for the linear probability
model. (No likelihood function there...)

» Another alternative is ‘Log-loss’ measure
» Negative number. Better prediction comes with a smaller log-loss in absolute values.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Practical use

» There are several measured of model fit, they often give the same ranking of
models.

» Do not use: R-squared could be computed for any model, but it no longer has the
interpretation we had for linear models with quantitative dependent variable.

» Only probit vs logit: pseudo R-squared may be used to rank logit and probit
models.

> Use, especially for prediction: Brier score is a metric that can be computed for all
models and is used in prediction.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Does smoking pose a health risk?— Goodness of fit

Table: Statistics of goodness of fit for probability predictions models

Statistic Linear probability — Logit  Probit
R-squared 0.103 0.104 0.104
Brier score 0.215 0.214 0.214
Pseudo R-squared n.a. 0.080 0.080
Log-loss -0.621 -0.617 -0.617

Source: share—health data. People of age 50 to 60 from
14 European countries who reported to be healthy in 2011.
N=3109.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Does smoking pose a health risk?— Goodness of fit

» Stable ranking — better predictions have a

» higher R-squared and pseudo R-squared
» and a lower Brier score
» a smaller log-loss in absolute values.

> Logit and the probit are of the same quality.

» Logit/probit better than the predictions from linear probability model. The
differences are small.

Data Analysis for Business, Economics, and Policy
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Bias of the predictions

» Post-prediction: we may be interested to study some features of our model

» One specific goal: evaluating the bias of the prediction.

» Probability predictions are unbiased if they are right on average = the average of
predicted probabilities is equal to the actual probability of the outcome.
» If the prediction is unbiased, the bias is zero.

» If, in our data, 20% of observations have y = 0 and 80% have y = 1, and the
average of our prediction is Z,N:1 yi/N = 0.8, then our prediction is unbiased.

> A large value of bias indicates a greater tendency to underestimate or overestimate
the chance of an event.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Calibration

» Unbiasedness refers to the whole distribution of probability predictions is

» A finer and stricter concept is calibration

» A prediction is well calibrated if the actual probability of the outcome is equal to the
predicted probability for each and every value of the predicted probability.

» You take predicted probabilities which are around 10% and check the average for
the realized outcome. If it is 10%, then the prediction is well calibrated.

» ‘Calibration curve’ is used to show this.

» A model may be unbiased (right on average) but not well calibrated
» underestimate high probability events and overestimate low probability ones

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Calibration curve

» A calibration curve

> Horizontal axis shows the values of all predicted probabilities (y7).
» Vertical axis shows the fraction of y = 1 observations for all observations with the
corresponding predicted probability.

> A well-calibrated case, the calibration curve is close to the 45 degree line.

» In practice we create bins for predicted probabilities and make comparisons of the
actual event's probability.
» Use percentiles in general. Some cases equal widths are used (this is a more noisy
estimate)

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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Calibration curve
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Probability models summary

v

Find patterns with ease when y is binary - model probability with regressions
» Linear probability model is mostly good enough, easy inference.
» Predicted values could be below 0, above 1
» Logit (and probit) - better when aim is prediction, predicted values strictly between
0-1
» Most often, LPM, logit, probit - similar inference
» Use marginal (average) differences
» No trivial goodness of fit. Brier score or pseudo-R-Squared.

» Calibration is useful diagnostics tool: well-calibrated models will predict a 20%
chance for events that tend to happen one out of five cases.

Data Analysis for Business, Economics, and Policy Gabor Békés (Central European University)
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