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Prediction setup

I Original data (what we have) –> to build a model
I Live data (data we do not have yet)

I Target variable Y (=dependent variable, response, outcome)
I Predictor variables X (= inputs, covariates, features, independent variables)

I Need to predict value of Y for target observation j in live data
I Actual value for Yj unknown
I Value for Xj known
I Maybe more than one target observation

I Need predicted value of Y for each
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Price cars (Case study 1)

The situation
I You want to sell your car through online advertising
I Target is continuous (in dollars)
I Features are continuous or categorical

I The business question
I What price should you put into the ad?
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Price apartments (Case study 2)

The situation
I You are planning to run an AirBnB business

I Maybe several rooms

I Target is continuous (in dollars)
I Features are varied from text to binary

I The business question
I How should you price apartments/houses?
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Predict company’s exit from business (Case study 3)

I Consulting company
I Predict which firms will go out of business (exit) from a pool of partners
I Target is binary: exit / stay

I Features of financial and management info

I Business decision
I Which firms to give loan to?

Data Analysis for Business, Economics, and Policy 5 / 61 Gábor Békés (Central European University)



Prediction setup Pred. error Loss Fn CS A1-A3 Model selection BIC and CV CS A3 Validity Algorithms Sum

Predictive Analysis: what is new?

I Most of econometrics focused on the relationship between X and Y
I What is the relationship like
I Is it a robust relationship – true in the population /general pattern?

I Now, we use x1, x2, . . . to predict y

ŷj = f̂ (xj)

I How is this different?
I We care less about

I Individual coefficient values, multicollinearity
I We still care about the stability of our results.
I Should we care about causality?
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Prediction setup
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Prediction setup

I Y is quantitative (e.g price)
I Quantitative prediction

I „Regression” problem

I Y is binary (e.g. Default or nor)
I Probability prediction
I Classification problem

I Broadly: Y takes values in a finite set of (unordered) classes (survived/died, sold/not
sold, car model)

I Time series prediction (Forecasting)
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Our focus in this course

I Feature engineering (variable selection)
I selecting variables
I coding, functional form

I Model building and prediction
I Estimate models
I Regressions with a variety of interactions, non-linear functional forms

I Remember splines, polynomials
I Machine learning methods

I Automated model selection under some conditions
I Model evaluation and selection

I Compare models based on some measure of fit

I Key idea in prediction: systematically combine estimation and model selection
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Regression and prediction

I Linear regression produces a predicted value for the dependent variable.
I Predictions: regressions tell the expected value of y if we know x .

I Linear regression with y , x1, x2, etc., is a model for the conditional expected value
of y , and it has coefficients β.

I We need estimated coefficients (β̂) and actual x values (xj) to predict an actual
value ŷ

yE = β0 + β1x1 + β2x2 + ...

ŷj = β̂0 + β̂1x1j + β̂2x2j + ...

Data Analysis for Business, Economics, and Policy 10 / 61 Gábor Békés (Central European University)



Prediction setup Pred. error Loss Fn CS A1-A3 Model selection BIC and CV CS A3 Validity Algorithms Sum

The Prediction Error

I Predicted value ŷj
I for target observation j

I Actual value j

I for target observation j
I Unknown when we make the prediction

I Prediction error
ej = ŷj − yj

I Error = predicted value – actual value
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Prediction Error

I The ideal prediction error, is zero: our predicted value is right on target.
The prediction error is defined by the direction of miss and size.

I Direction of miss
I Positive if we overpredict the value: we predict a higher value than actual value.
I Negative if we underpredict the value: our prediction is too low.
I Whether positive versus negative errors matter more or they are equally bad,

depends on the decision problem.
I Size

I Larger in absolute value the further away our prediction is from the actual value.
I It is smaller the closer we are.
I It is always better to have a prediction with as small an error as possible.
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Decomposing the prediction error

I The prediction error is the difference between the predicted value of the target
variable and its actual (yet unknown) value for the target observation:

ej = ŷj − yj

I The prediction error can be decomposed into three parts:
1. estimation error: the difference between the estimated value from the model and

the true value from the model
2. model error: the difference between the true value from the model and the best

predictor value; ie we may not have the best model
3. genuine error (idiosyncratic or irreducible error): error due to not being able to

perfectly estimate all predicted values even if estimation error is zero, and we have
the best possible model.
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Interval prediction for quantitative target variables

I One advantage of regressions - easy quantify uncertainty of prediction

I Interval predictions produce ranges to capture the uncertainty of predicted values
I Interval predictions quantify two out of the three sources of prediction uncertainty:

estimation error and genuine (or irreducible) error.
I They do not include the third source, model uncertainty!

I The 95% prediction interval (PI) tells where to expect the actual value for the
target observation.
I The PI for linear regression requires homoskedasticity.
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The Loss function
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Loss Functions

I Value attached to the prediction error
I Specifying how bad it is

I Loss function determines best predictor

I Ideally derived from decision problem
I Consequence of error is bad decision
I Loss due to bad decision

I Difficult to quantify exact value of loss in practice

I But this could be super important in some business cases
I Even if hard to adjust modeling
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Loss Functions

I Think about qualitative characteristics of loss function
I The most important qualitative characteristics of loss functions:

I Symmetry
I If losses due to errors in opposing direction are similar

I Convexity
I If twice as large errors generate more than twice as large losses
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Loss Functions of Various Shapes
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Examples 1 – used cars

I The loss function for predicting the value of our used car depends on how we value
money and how we value how much time it takes to sell our car.

I A too low prediction may lead to selling our car cheap but fast;
I A too high prediction may make us wait a long time and, possibly, revising the

sales price downwards before selling our car.

I What kind of loss function would make sense?
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Examples 2 - creditors

I Creditors decide whether to issue a loan only to potential debtors that are
predicted to pay it back with high likelihood.

I Two kinds of errors are possible:
I debtors that would pay back their loan don’t get a loan
I debtors that would not pay back their loan get one nevertheless.

I The costs of the first error are due to missed business opportunity; the costs of the
second error are due to direct loss of money.

I These losses may be quantified in relatively straightforward ways.

I What kind of loss function would make sense?
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Squared Loss

I L(ej) = e2
j = (ŷj − yj)

2

I The most widely used loss function
I Symmetric: Losses due to errors in opposing direction are same
I Convex: Twice as large errors generate more than twice as large losses

I Business sense ?
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Adding up – MSE and MAE

I Many target observations in practice
I Or we can think about many situations with a single target observation
I Squared loss -> Mean Squared Error (MSE)

For k = 1...K observations:

MSE =
1
K

K∑
k=1

(ŷk − yk)2

(1)

RMSE =
√
MSE =

√√√√ 1
K

K∑
k=1

(ŷk − yk)2 (2)
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MSE implies expected value

MSE =
1
K

K∑
k=1

(ŷk − yk)2

I MSE implies mean value for best predictor
I Linear (least squares) regression
I Why?

I Because the solution to least squares minimization problem is the average.
I Technically: first-order condition of minimization problem

I RMSE = square root of MSE
I MSE is the numerator of the R-squared!
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MSE decomposition : Bias and Variance

May decompose MSE into Bias + Variance
I The bias of a prediction is the average of its prediction error.

I An unbiased prediction produces zero error on average across multiple predictions.
I A biased prediction produces nonzero error on average; the bias can be positive or

negative
I The variance of a prediction describes how it varies around its average value when

multiple predictions are made.
I It’s the variance of the prediction error around its average value.
I The variance is zero if the prediction error is the same for all predictions.
I The variance is higher the larger the spread of specific predictions around the

average prediction
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MSE decomposition : Bias and Variance

I MSE is the sum of squared bias and the prediction variance.
I This decomposition helps appreciate a trade-off.

MSE =
1
K

K∑
k=1

(ŷk − yk)2

= (
1
K

K∑
k=1

(ŷk − ȳ))2 +
1
K

K∑
k=1

(yk − ȳ)2

= Bias2 + PredictionVariance

I OLS is unbiased. Some other methods will allow for some bias in return for lower
variance.
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Case study: used cars data

I Suppose you want to sell your car of
a certain make, type, year, miles,
condition and other features.

I The prediction analysis helps uncover
the average advertised price of cars
with these characteristics
I That helps decide what price you

may want to put on your ad.
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Case study: used cars data

I Scraped from a website
I Year of make (age), Odometer (miles)
I Tech specifications such as fuel and drive
I Dealer or private seller
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Case study: Loss function

I The loss function for predicting the value of our used car depends on how we value
money and how we value how much time it takes to sell our car.

I A too low prediction may lead to selling our car cheap but fast;
I A too high prediction may make us wait a long time and, possibly, revising the

sales price downwards before selling our car.

I Symmetric
I Sensitive to big deviations
I RMSE and OLS
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Case study - used cars: features

I Odometer, measuring miles the car traveled (Continuous, linear)
I More specific type of the car: LE, XLE, SE (missing in about 30% of the

observations). (Factor – set of dummies , incl N/A)
I Good condition, excellent condition or it is like new (missing for about one third of

the ads). (Factor – set of dummies, incl N/A)
I Car’s engine has 6 cylinders (20% of ads say this; 43% says 4 cylinders, and the

rest has no information on this). (Binary for 6 cylinders)
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Case study: models by hand

I Model 1: age, age squared
I Model 2: age, age squared, odometer, odometer squared
I Model 3: age, age squared, odometer, odometer squared, LE, excellent condition,

good condition, dealer
I Model 4: age, age squared, odometer, odometer squared, LE, excellent condition,

good condition, dealer, LE, XLE, cylinder
I Model 5: same as Model 4 but with all variables interacted with age (won’t show

in next table)
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Case study: Car price model results

(1) (2) (3) (4)
Variables Model 1 Model 2 Model 3 Model 4

age -1,530.09 -1,149.22 -873.47 -836.64
agesq 35.05 27.65 18.21 17.63
odometer -303.84 -779.90 -788.70
odometersq 18.81 19.20
LE 28.11 -20.48
XLE 301.69
SE 1,338.79
cond_likenew 558.67
cond_excellent 176.49 190.40
cond_good 293.36 321.56
cylind6 -370.27
dealer 572.98 822.65
Constant 18,365.45 18,860.20 19,431.89 18,963.35

R-squared 0.847 0.898 0.913 0.919

Note: Chicago cars. Prices in dollars. N=281. Source: used-cars
dataset.
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Case study: Results

I When doing prediction, coefficients are less important.
I But we shall use them for sanity check: age negative, convex (flattens out)
I SE may not be even displayed. It is helpful for model selection, but only along with

other measures

I and values of the predictor variables for our car: age = 10 (years), odometer= 12
(10 thousand miles), type= LE, excellent condition=1.

I A point prediction, Model 3: age: -873.47, age squared=18.21, odometer -799.90,
odometer sq = 18.81, LE=28.11, cond excellent: 176.49+ C=19.431.89

I Predicted is price is 6073.
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Case study: Prediction Interval

I Calculating prediction intervals for the baseline models
I Very wide interval despite high R2
I Prediction is hard!
I Even with a good model, you’ll make plenty of errors
I Should be aware
I Let your clients know in advance...
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Case study: Prediction Interval

I Based on the third model, we have a point prediction of $6073
I Have a 80% prediction intervals (PI) – Ads for cars just like ours may ask a price

ranging from $4,317 to $7,829 with a 80% chance.

Table: Car price model

Model 1 Model 3

Point prediction 6,569 6,073
Prediction Interval (80%) [4,296-8,843] [4,317-7,829]
Prediction Interval (95%) [3,085-10,053] [3,382-8,763]

Note: Chicago cars. Prices in dollars.
Source: used-cars dataset.
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Model selection
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Data for prediction

I We have a dataset
I We wanna make some prediction
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Model selection

Model selection is finding the best fit while avoiding overfitting and aiming for high
external validity
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External validity, avoiding overfitting and model selection

I Have a dataset and a target variable. Compare various models of prediction.
I How to choose a model?

I Pick a model that can predict well....
I Best prediction - best model that would produce the smallest prediction error.
I Context of squared loss function –> finding the regression that would produce the

smallest RMSE for the target observations.

I Pick a model that can predict well on the live data
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Underfit, overfit

I Comparing two models (model 1 and model 2)
I Model 1 can give a worse fit in the live data than model 2 in two ways.

I Model 1 may give a worse fit both in the original data and the live data. In this
case, we say that model 1 underfits the original data.
I Simple: we should build a better model.

I Model 1 may actually give a better fit in the original, but a worse fit in the live
data. In this case, we say that model 1 overfits the original data.
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Overfitting

I Overfitting is a key aspect of external validity
I finding a model that fits the data better than alternative models
I but makes worse actual prediction.

I Thus, the problem of overfitting the original data is best split into two problems:
I fitting patterns in the original data that are not there in the population, or general

pattern, it represents;
I fitting patterns in the world of the original data that will not be there in the world

of the live data.
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Reason for overfitting

I The typical reason for overfitting is fitting a model that is too complex on the
dataset.
I Complexity: number of estimated coefficients

I Often: fitting a model with too many predictor variables.
I Including too many variables from the dataset that do not really add to the

predictive power of the regression,
I often because they are strongly correlated with other predictor variables.

I Specifying too many interactions,
I Too detailed nonlinear patterns

I as piecewise linear splines with many knots
I polynomials of high degree.
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Increasing model complexity

I As we increase model complexity
I Such as number of features (variables)

I By adding interactions, etc.
I We will see

I RMSE within dataset to fall
monotonously

I RMSE for target observations (ie.
not in our dataset) to fall and then
rise as we overfit

I example to come in class 2
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Finding the best model by best fit and penalty: The BIC

I Approach 1: Indirectly
I Estimate it by an adjustment

I Use a method based on some distributional assumptions
I Need to pick an evaluation criterion

I =In-sample evaluation with penalty
I Specify and estimate model using all data
I Use a measure of fit that helps avoid overfitting

I Such as
I adjusted R2

I BIC = Bayesian Information Criterion, or Schwarz criterion
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Indirect evaluation criteria

I Main methods: AIC, BIC and adjusted R2

I Advantage: easy to compute
I Disadvantage: assumptions

I Adjusted R2 – just add a penalty for having many RHS vars
I corrects with (n − 1)/(n − p − 1)

I Akaike Information Criterion
I AIC = −2× ln(likelihood) + 2× k

I Schwarz – Bayesian Information Criterion
I BIC = −2× ln(likelihood) + ln(N)× k

I Both quantities that take the log likelihood and apply a penalty for the number of
parameters being estimated.Both are based on information loss theory from the fifties.

I BIC puts heavier penalty on models with many RHS variables, than AIC.
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Model fit evaluation

I Use a good measure of fit to compare models.
I Don’t

I Don’t use MSE or R-squared (the two very closely related).
I They choose best fit in data and don’t care about overfitting.

I In practice, use BIC.
I BIC good approximation of what more sophisticated methods would pick. Or even

more conservative...
I That introduces a “penalty term”

I More predictor variables leads to worse value
I Even more so in large samples.
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Finding the best model by training and test samples

I Approach Nr.2: Directly
I Estimate it using a test (validation) set approach.

I Needs cutting the dataset into training and test sample
I No assumption
I Need to pick evaluation criterion (loss function) = RMSE (root mean squared error)

I Estimate the model in part of the data (say, 80%).
I Training sample

I Evaluate predictive performance on the rest of the data.
I Test sample

I Avoid overfitting in training data by evaluating on test data.
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Training and Test Samples

I Creating two sub-samples
I Randomly! (ie. not 1—80 and 81—100)

I Randomly generate an ID, sort and create two sub-samples.
I Training sample 80%

I Regressions will be on run on this sample
I Coefficients estimated

I Test (validation) sample 20%
I Using estimated coefficients, we predict values for flats in the validation sample
I Calculate residual, RMSE in the test sample

I RMSE rather than MSE – smaller numbers....
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5-fold cross-validation

I Split sample k=5 times to
train and test

I For each folds:
I Estimate model on training.
I Get coefficients.
I Use them to estimate on

Test
I Calculate test MSE

I Average and take Sqrt
I Repeat for models
I Pick model w lowest avg

RMSE
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BIC vs test RMSE

I In our experience, in practice, BIC is the best indirect criterion – closest to test
sample.

I The advantage of BIC is that it needs no sample splitting which may be a problem
in small samples.

I The advantage of test MSE is that it makes no assumption.

I BIC is a good first run, quick, is often not very wrong.
I Ultimately, you want to do a test MSE.

Data Analysis for Business, Economics, and Policy 49 / 61 Gábor Békés (Central European University)



Prediction setup Pred. error Loss Fn CS A1-A3 Model selection BIC and CV CS A3 Validity Algorithms Sum

Case study: Model selection

I We have the ingredients, we need to pick a model.
I This process involves variable selection and a decision rule of choosing the model

based on some loss function.

I BIC on the actual data
I Test-sample RMSE
I Cross-validated (CV) RMSE

I If enough data / computer power, use CV RMSE
I With larger dataset, overfit becomes less of an issue.
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Case study: Model selection

Table: Car price models -BIC and in-sample RMSE

Model N vars N coeff R-squared RMSE BIC

1 Model 1 1 3 0.85 1, 755 5, 018
2 Model 2 2 5 0.90 1, 433 4, 910
3 Model 3 5 9 0.91 1, 322 4,893
4 Model 4 6 12 0.92 1, 273 4,894
5 Model 5 6 22 0.92 1,239 4, 935

Note: In sample values. Model 1: age, age squared, Model 2= Model 1
+odometer, odometer squared, Model 3= Model2 + SE, excellent condition,
good condition, dealer, Model 4= Model 3 + LE, XLE, like new condition,
6cylinder, Model 5 = Model 4 + many interactions.
Source: used-cars dataset.
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Case study: Model selection

I Cross-validate using 4-fold cross validation.
I Run the regression on 3/4 of the sample, predicting on the remaining 1/4 of the

sample, get RMSE on test sample.
I We then average out RMSE values over the 4 test samples

Table: Car price models -CV RMSE

Fold No. Model 1 Model 2 Model 3 Model 4 Model 5

1 Fold1 1, 734 1, 428 1, 331 1, 395 1, 391
2 Fold2 2, 010 1, 781 1, 692 1, 638 1, 693
3 Fold3 1, 465 1, 251 1, 256 1, 253 1, 436
4 Fold4 1, 823 1, 325 1, 250 1, 246 1, 307
5 Average 1, 769 1, 460 1,394 1,392 1, 464

Source: used-cars dataset.
Data Analysis for Business, Economics, and Policy 52 / 61 Gábor Békés (Central European University)



Prediction setup Pred. error Loss Fn CS A1-A3 Model selection BIC and CV CS A3 Validity Algorithms Sum

Case study: Model selection

I Model 3 has lowest BIC, lowest average RMSE on test samples. Model 4 is close.
I Interestingly, both approaches suggests that Model 3 is the one that has the best

prediction properties
I Small sample, simple model.

Data Analysis for Business, Economics, and Policy 53 / 61 Gábor Békés (Central European University)



Prediction setup Pred. error Loss Fn CS A1-A3 Model selection BIC and CV CS A3 Validity Algorithms Sum

External validity and stable patterns

I BIC, Training-test, k-fold cross-validation. . .
I All very nice
I But, in the end, they all use the information in the data.
I How would things look for the target observation(s)?
I The issue of stationarity – how our data is related to other datasets we may use

our model
I We may have some ideas
I We may use non-random test samples that may mimic the difference in our data and

the target observations

I In the end we can’t know but need to think about it.
I Plus be aware, that some difference is likely, so your model fit in an

outside data source is likely to be worse...
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External validity and stable patterns

I Most predictions will be on future data
I High external validity requires that the environment is stationary.
I Stationarity means that the way variables are distributed remains the same over

time.
I Here that distribution is to be understood in a general way: the joint distribution of

predictor variables and target variable are required to remain the same throughout
the time covered in the data and the time of the forecast.

I Stationarity ensures that the relationship between predictors and the target
variable is the same in the data and the forecasted future.
I If the relationship breaks down whatever we establish in our data won’t be true in

the future, leading to wrong forecasts.
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External validity and stable patterns

I External validity and stable patterns - Very broad concept
I It’s about representativeness of actual data –> to live data
I Often hard to know.

I Remember hotels (other dates, other cities).

I Domain knowledge can help.
I Study if patterns were stable in the past / other locations were stable can help.
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Algorithms
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Machine Learning and the Role of Algorithms

I Predictive analytics is often used for data analysis whose goal is prediction. But
a more popular, and related, term is machine learning.

I Machine learning is an umbrella concept for methods that use algorithms to find
patterns in data and use them for prediction purposes.

I An algorithm is a set of rules and steps that defines how to generate an output
(predicted values) using various inputs (variables, observations in the original data).

I A formula is an example of an algorithm – one that can be formulated in terms of
an equation.
I OLS formula for estimating the coefficients of a linear regression is an algorithm.
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Machine Learning Algorithms

I Machine learning is about algorithms, machines and learning

I Algorithms specify each and every step to follow in a clear way.
I Not all algorithms can be translated into a formula.

I The bootstrap estimation of a standard error (Chapter 5, Section 5.6) is an example.
I K-fold cross-validation.

I Heavy use of machines = computers. Steps of algorithm translated into computer
code and make the computer follow those steps. Fast.

I Learning - learn something from the data with data and an algorithms.
I Predicted value of y=? If combine x variables using a particular model.
I learning which model is best for predicting y as well as what that predicted value is.
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What is, machine learning?

I Many definitions, discussions.
I Here: Machine learning is an approach to predictive data analysis – achieving the

best possible prediction from available data.
I Consequence 1: understanding the patterns of associations between y and x is of

secondary importance.
I We need stable patterns for good prediction in live data, but that is it.

I The machine learning attitude - a preference for evaluating methods based on data
as opposed to abstract principles.
I Original data to live data
I Not a general rule or philosophy

I Machine learning broadly: all prediction models including OLS
I Machine learning narrowly: prediction models with no formula, ie not OLS
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Main takeaways

I Prediction uses the original data with y and x to predict the value of y for
observations in the live data, in which x is observed but y is not
I Prediction uses a model that describes the patterns of association between y and x

in the original data
I Cross-validation can help find the best model in the population, or general pattern,

represented by the original data
I Stability of the patterns of association is needed for a prediction with high external

validity
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